
Final Project - Statistical orbit determination
ASEN 5044 - Statistical Estimation for Dynamical Systems (Fall 2025)

Prof. Khosro Ghobadi-Far

Jack Huston
Ryan Hyatt

Philippe Kruettli

December 12, 2025

1

Contents
1 Team member contributions 3

1.1 Ryan . 3
1.2 Philippe . 3
1.3 Jack . 3

2 Part I - Deterministic System Analysis 4
2.1 Continuous-Time Dynamics . 4
2.2 Discrete-Time Linearization . 6
2.3 Dynamics Simulation . 7

2.3.1 Station Visibility . 7
2.3.2 Linearized DT simulation . 7
2.3.3 Full nonlinear simulation . 8
2.3.4 Results and Plots . 9
2.3.5 DT Linearized Simulation . 10
2.3.6 Nonlinear Simulation . 11
2.3.7 Nonlinear Simulated Measurements vs. Time 12
2.3.8 Comparison . 13

3 Part II - Stochastic Nonlinear Filtering 14
3.1 Stochastic Nonlinear Filter Validation via Monte Carlo Analysis 14

3.1.1 Ground Truth Simulation . 14
3.1.2 Filter Consistency Testing . 14
3.1.3 Filter Tuning Methodology . 15

3.2 Linearized Kalman Filter (LKF) . 16
3.2.1 Initialization . 16
3.2.2 Time update/prediction step . 16
3.2.3 Index Convention . 16
3.2.4 Measurement update/correction step . 16
3.2.5 Output . 17
3.2.6 Results . 17

3.3 Extended Kalman Filter (EKF) . 22
3.3.1 Initialization and EKF setup . 22
3.3.2 Time update (prediction) . 22
3.3.3 Measurement update . 23
3.3.4 Results . 24

3.4 State trajectory estimation and comparison . 28

4 Estimation Haiku - Advanced Question 13 31

5 Appendix 33
5.1 Appendix A: Equation Derivation . 33
5.2 Appendix B: MATLAB Code . 39

2

1 Team member contributions

1.1 Ryan
1. Linearized DT dynamics and measurement simulation

2. Part 3 linearized DT dynamics figure generation

3. Document writeup for part 3 linearized simulation

4. Implementation and tuning of linearized Kalman Filter (Part 4a)

5. Part 6 - Linearized Kalman filter implementation

6. Document writeup for part 4a, and part 6

1.2 Philippe
1. Nonlinear ode45 dynamics and measurement simulation

2. Part 3 non-linear dynamics figure generation

3. Document writeup for part 3 non-linear simulation

4. Non-linear simulation running as monte-carlo for parts 4 and 5

5. Plots of the NEES test statistics for 4.b and 5.b

6. Plots of the NIS test statistics for 4.c and 5.c

7. Part 6 comparison

8. Document writeup for NEES and NIS statistics for 4.b/c and 5.b/c, and part 6 comparison.

1.3 Jack
1. Part 1 Jacobian derivation for CT model

2. Part 2 Linearization and associated Matlab Script

3. Document writeup for parts 1 and 2

4. Implementation and tuning of Extended Kalman Filter (Part 5a)

5. Part 6 - Filter implementation

6. Document writeup for part 5a, and part 6

3

2 Part I - Deterministic System Analysis

2.1 Continuous-Time Dynamics
The spacecraft motion is modeled in an Earth–centered inertial frame with state vector

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

 =


X(t)

Ẋ(t)
Y (t)

Ẏ (t)

 ,

control input

u(t) =

[
u1(t)
u2(t)

]
,

and process disturbance

w̃(t) =

[
w̃1(t)
w̃2(t)

]
.

The current orbital radius is

r(t) =
√
X2(t) + Y 2(t) =

√
x2
1(t) + x2

3(t),

and the continuous–time nonlinear dynamics (including small control and disturbance accelera-
tions) are

ẋ1(t) = Ẋ(t) = x2(t),

ẋ2(t) = Ẍ(t) = −µ
x1(t)

r3(t)
+ u1(t) + w̃1(t),

ẋ3(t) = Ẏ (t) = x4(t),

ẋ4(t) = Ÿ (t) = −µ
x3(t)

r3(t)
+ u2(t) + w̃2(t),

with the standard gravitational parameter µ = 398600 km3/s2.
These equations can be written as

ẋ(t) = f(x(t)) +B u(t) + Γ w̃(t),

where f ∈ R4 collects the gravitational acceleration terms, and the input and disturbance Jacobians
are

B = Γ =


0 0
1 0
0 0
0 1

 ∈ R4×2.

Dynamics Jacobian A(x)

The continuous–time dynamics Jacobian A(x) = ∂f/∂x (dimensions 4 × 4) is obtained by
differentiating the components of f(x) with respect to the state variables x1, x2, x3, and x4. Using
r =

√
x2
1 + x2

3 we find

∂f1
∂x

=
[
0 1 0 0

]
,

∂f2
∂x1

= −µ
∂

∂x1

(x1

r3

)
= µ

2x2
1 − x2

3

r5
,

∂f2
∂x3

= −µ
∂

∂x3

(x1

r3

)
= 3µ

x1x3

r5
,

∂f3
∂x

=
[
0 0 0 1

]
,

∂f4
∂x1

= −µ
∂

∂x1

(x3

r3

)
= 3µ

x1x3

r5
,

∂f4
∂x3

= −µ
∂

∂x3

(x3

r3

)
= µ

2x2
3 − x2

1

r5
,

4

while the remaining partial derivatives are zero. Collecting these terms gives

A(x) =


0 1 0 0

µ
2x2

1 − x2
3

r5
0 3µ

x1x3

r5
0

0 0 0 1

3µ
x1x3

r5
0 µ

2x2
3 − x2

1

r5
0

 , A(x) ∈ R4×4.

Measurement model and Jacobian Hi(x, t)

Each ground station i provides a 3–dimensional measurement

yi(t) =

ρi(t)ρ̇i(t)
ϕi(t)

+ ṽi(t),

where ρi is the range, ρ̇i the range rate, and ϕi the elevation angle from station i to the spacecraft.
Using the station position (Xi

s(t), Y
i
s (t)) and velocity (Ẋi

s(t), Ẏ
i
s (t)), we define relative position and

velocity components
∆Xi = X(t)−Xi

s(t), ∆Yi = Y (t)− Y i
s (t),

∆Ẋi = Ẋ(t)− Ẋi
s(t), ∆Ẏi = Ẏ (t)− Ẏ i

s (t),

and
ρi =

√
∆X2

i +∆Y 2
i , ai = ∆Xi∆Ẋi +∆Yi∆Ẏi.

The nonlinear measurement functions are then

ρi(t) = ρi,

ρ̇i(t) =
ai
ρi
,

ϕi(t) = tan−1

(
∆Yi

∆Xi

)
.

Linearizing yi(t) = hi(x(t), t) with respect to the spacecraft state yields the measurement
Jacobian

Hi(x, t) =
∂hi

∂x
(x, t) ∈ R3×4,

with rows

∂ρi

∂x
=

[
∆Xi

ρi
0

∆Yi

ρi
0

]
,

∂ρ̇i

∂x
=

[
ρi∆Ẋi − ai∆Xi/ρi

ρ2i

∆Xi

ρi

ρi∆Ẏi − ai∆Yi/ρi
ρ2i

∆Yi

ρi

]
,

∂ϕi

∂x
=

[
−∆Yi

ρ2i
0

∆Xi

ρ2i
0

]
.

Stacking Hi(x, t) over all visible stations at time t gives the full measurement Jacobian H(x, t)
used in the linearized output model.

A full handwritten derivation is available in the appendix below.

5

2.2 Discrete-Time Linearization
Continuous-time Linearized Model

We linearize the nonlinear dynamics about a time-varying nominal (noise-free) trajectory
xnom(t) driven by a nominal input unom(t). The perturbation variables are defined as

δx(t) = x(t)− xnom(t), δu(t) = u(t)− unom(t), w̃(t) = w̃(t),

and for each station i,

δyi(t) = yi(t)− yinom(t), yinom(t) = hi
(
xnom(t), t

)
.

We can therefore find that the continuous time linearized perturbation model is the following:

δẋ(t) = A
(
xnom(t)

)
δx(t) +B δu(t) + Γ w̃(t),

where A(x), B, and Γ are the Jacobians derived in Part I(a). Importantly, as the nominal lin-
earization point is continuously changing and A is evaluated along the nominal trajectory, A is
time–varying:

Ak = A
(
xnom(tk)

)
, tk = k∆T.

We also find that the linearized measurement model yi(t) about xnom(t) is equal to the following:

δyi(t) = Hi
(
xnom(t), t

)
δx(t),

where Hi(x, t) = ∂hi/∂x is the 3× 4 measurement Jacobian for station i. Stacking the rows for all
visible stations at time t gives the full measurement Jacobian H(xnom(t), t), and the CT linearized
output equation becomes

δy(t) = H
(
xnom(t), t

)
δx(t).

The resulting CT linearized system thus has state dimension n = 4, input dimension m = 2,
disturbance dimension 2, and output dimension p = 3Nvis(t), where Nvis(t) is the number of
ground stations that can see the spacecraft at time t.

Eulerized Discrete-time Linearization

With sampling period ∆T = 10 s, we can find a discrete–time linear perturbation model by
applying a Euler approximation to the CT linearized dynamics. At time tk we have

δẋ(tk) = Ak δx(tk) +B δuk + Γ w̃k, where Ak = A
(
xnom(tk)

)
,

and can approximate the time derivative as

δẋ(tk) ≈
δxk+1 − δxk

∆T
.

Solving for δxk+1 and collecting terms gives

δxk+1 ≈ (I +∆T Ak) δxk +∆T B δuk +∆T Γ w̃k.

We therefore define the Eulerized DT Jacobian matrices

F̃k = I +∆T Ak, G̃k = ∆T B, Ω̃k = ∆T Γ,

so that the discrete–time linearized perturbation dynamics can be written as

δxk+1 = F̃k δxk + G̃k δuk + Ω̃k w̃k.

In our implementation, Ak is recomputed at each time step using the current nominal state
xnom(tk), and the corresponding F̃k, G̃k, and Ω̃k are updated accordingly.

Evaluating the measurement Jacobian along the nominal trajectory gives

Hk = H
(
xnom(tk), tk

)
,

and the DT linearized measurement model for the stacked measurements of all visible stations is

δyk = Hk δxk.

6

2.3 Dynamics Simulation
Initial Conditions and Perturbation
The total initial state is the sum of the nominal state xnom and the initial state perturbation
x0,perturb as provided by the problem statement and solution sketch:

xnom =


6678
0
0

r0 ·
√

µ
r30

 =


6678
0
0

7.72583519755957



x0,perturb =


0

0.075
0

−0.021


x0 = xnom + x0,perturb

We assume no process noise, no measurement noise, and no control input perturbations.

2.3.1 Station Visibility

In determining visibility of the vehicle from a given ground station, both linear and nonlinear
simulations use the full simulated state to determine visibility, rather than simply the perturbation.
To ensure the vehicle’s angle is within π/2, the following expression is used, to find the shortest
possible angle between the two (vehicle and ground station), regardless of the quadrant between
the two. This works at least when ϕi and θi are defined in the range [−π, π].

((ϕi − θi) + π mod 2π)− π

The visibility condition is equivalent to determining if the angle between the position vector of the
vehicle relative to the ground station and the ground station and the origin of the earth centered
reference are within π/2 radians, so alternatively, a method involving solving for the dot product
of these two vectors can be used. This visibility can be visualized by plotting the state cartesian
coordinates at arbitrary timesteps.

Figure 1: Vehicle position visualization.

2.3.2 Linearized DT simulation

State Simulation
The linearized DT simulation models the dynamics of the perturbations, and combines with the
analytical solution of the "nominal" state, and so the full state is given as:

xk = xnom(k) + δx(k)

The nominal trajectory is considered as a pure 2D circular orbit, with no inclination, and so the
position of the vehicle is fully described by the nominal radius r and the angular displacement

7

relative to the earth centered inertial frame described in the project description. xnom(k) in polar
coordinates is calculated as:

xnom,r(k) = r, xnom,θ(k) = ωt+ xnom,θ

xnom,polar(k) =


r(k)
ṙ(k)
θ(k)

θ̇(k)

 =


r
rω

ωt+ xnom,θ

ω


xnom(k) in cartesian coordinates is then calculated as:

xnom(k) =


r cos(θ)

−rθ̇ sin(θ)
r sin(θ)

rθ̇ cos(θ)


δxk = Fk δxk−1 +Gk δuk + wk

Of course, for part 1, this simplifies to: δxk = Fk δxk−1

Measurement Simulation

Similarly to the states, the linearized model of the perturbation of y(k) is modeled and combined
with the analytical solution of the "nominal" state, and so the full measurement is given as:

y(k) = ynom(k) + δy(k)

ynom(k) is found using the full nonlinear expressions for measurement described in the full nonlinear
simulation section and in the earlier derivation section, however at xnom(k).

δy(k) is calculated using the linearized expression, again described in parts a and b.

2.3.3 Full nonlinear simulation

Simulation Details
The state dynamics were simulated using the ode45 function in Matlab. The time step ∆T was
defined as 10s and the total simulation time must cover at least one full orbit period, but a
simulation duration of 14,000s was selected, to cover multiple orbital periods.

Nonlinear State equations
The current radius at time t is calculated using:

r(t) =
√
X2(t) + Y 2(t) =

√
x2
1(t) + x2

3(t)

The nonlinear state equations are then given as follows:

ẋ1 = Ẋ = x2

ẋ2 = Ẍ = −µ · x1

r3

ẋ3 = Ẏ = x4

ẋ4 = Ÿ = −µ · x3

r3

with µ = 398600km3/s2 being the standard gravitational parameter.

8

Nonlinear measurement equations
The size of the measurement vector y(t) changes with time t as it depends on which stations can
currently see the spacecraft and therefore provide a valid measurement. Its dimension is p ·N × 1
with N being the number of stations that can observe the spacecraft at time t.

The measurement vector yi(t) for each station i at time t is defined as follows:

yi(t) =

ρi(t)ρ̇i(t)
ϕi(t)

+ ṽi(t) =

ρi(t)ρ̇i(t)
ϕi(t)


This assumes, there is no measurement error and therefore the measurement error vector ṽi(t) is
zero at each time t and for each station i. Each element of this measurement vector is calculated
as follows:

ρi(t) =
√

(X(t)−Xi
s(t))

2 + (Y (t)− Y i
s (t))

2

ρ̇i(t) =
[X(t)−Xi

s(t)] · [Ẋ(t)− Ẋi
s(t)] + [Y (t)− Y i

s (t)][Ẏ (t)− Ẏ i
s (t)]

ρi(t)

ϕi(t) = tan−1

(
Y (t)− Y i

s (t)

X(t)−Xi
s(t)

)
Here [X(t), Y (T), ˙X(t), ˙Y (t)] are given by the current state vector of the spacecraft. But

[Xi
s(t), Y

i
s (T), Ẋ

i
s(t), Ẏ

i
s (t)] are the measurement station i’s state vector at time t. Its state equa-

tions for the positions are given by the problem statement as follows:

Xi
s(t) = RE · cos(ωEt+ θi(0))

Y i
s (t) = RE · sin(ωEt+ θi(0))

with RE = 6378km (Earth’s radius), ωE = 2π
86400rad/s (Earth’s rotation speed) and the initial

angle θi(0) of measurement station i at time t = 0 given as:

θi(0) = (i− 1) · π
6

For the velocity components of the measurement station’s state vector, we take the time deriva-
tive of the position equations:

Ẋi
s(t) =

d

dt
Xi

s(t) = −ωE ·RE · sin(ωEt+ θi(0))

Ẏ i
s (t) =

d

dt
Y i
s (t) = ωE ·RE · cos(ωEt+ θi(0))

Spacecraft visibility to measurement station
Due to the relative motion of the spacecraft and each station, the number of stations providing a
valid observation vector yi(t) varies with time and each station i only provides a valid observation
when ϕi(t) is in the given range:

ϕi(t) ∈ [−π

2
+ θi(t),

π

2
+ θi(t)]

where θi(t) = tan−1

(
Y i(t)

Xi(t)

)
2.3.4 Results and Plots

The DT and nonlinear models are simulated with the same initial state perturbation, initial total
state, and number of timesteps as provided for the sanity checks, and inspecting of exact values
shows an exact match.

9

2.3.5 DT Linearized Simulation

Figure 2: DT Simulation States and Nominal States

Figure 3: DT Linearized Simulated State Perturbations

10

Figure 4: DT Linearized Simulated Measurements

2.3.6 Nonlinear Simulation

Figure 5: States vs. Time, Nonlinear Dynamics Simulation

11

2.3.7 Nonlinear Simulated Measurements vs. Time

Figure 6: Nonlinear Simulated Measurements vs. Time

12

2.3.8 Comparison

The DT linearized simulation states can be simulataneously plotted, and the error of the DT
linearized simulation versus the nonlinear simulation can be calculated. At the scale of the full
states, it’s difficult to see any error. It can be seen that error increases with time in every part of
the state.

Figure 7: DT Linearized vs. Nonlinear Simulation States

Figure 8: DT Linearized State Error vs. Nonlinear Simulation States

13

Measurement Comparison
Due to the complexity of comparing all measurements, this comparison is omitted, but it can be
seen visually that the DT measurements deviate from the nonlinear measurements with increased
time, particularly in the range rate measurements.

3 Part II - Stochastic Nonlinear Filtering

3.1 Stochastic Nonlinear Filter Validation via Monte Carlo Analysis
To validate the statistical consistency and performance of the Linearized Kalman Filter (LKF) and
the Extended Kalman Filter (EKF), a Monte Carlo Truth Model Test (TMT) simulation
was conducted. This involved running the filter N = 1, 000 times over a trajectory of K = 1, 400
time steps (14,000s, more than a full orbit, providing multiple station visibility cycles and sufficient
data points for χ2-testing). N was chosen as 1,000 to ensure sufficient accuracy, as according to
the Law of Large Numbers, the standard error of a normal distribution, as N grows, shrinks
proportionally to 1√

N
.

3.1.1 Ground Truth Simulation

The true state trajectory, xtrue(k+1), is generated using the full nonlinear dynamics (using Matlab’s
ode45) and full nonlinear measurements, incorporating true process noise wk and measurement
noise vk according to the provided process noise covariance matrix Qtrue and measurement noise
covariance matrix Rtrue.

Discrete-Time Noise Modeling
To get a discrete-time process noise sample from the continuous-time process noise covariance
Qtrue, we first pick a sample ξk and then multiply that with Ω̃k to get DT process noise wk.

ξk ∼ N (0,Qtrue)

Ω̃(t) = Γ(t)∆T

wk = Ω̃kξk = Ω̃(k∆T)ξk

where Γ relates process noise to the state dynamics, and ∆T is the sampling time (10 sec).

The process noise wk and measurement noise vk are additive zero-mean, white, and Gaussian
(AWGN):

wk ∼ N (0,Q)

vk ∼ N (0,R)

Initial State Randomization
To ensure the statistical validity of the TMT, the true initial state xtrue(0) is randomly instantiated
using the filter’s initial estimate x̂+(0) and its state estimate covariance P+(0):

xtrue(0) ∼ N (x̂+(0),P+(0))

3.1.2 Filter Consistency Testing

The consistency of the filter’s estimated covariance matrices (P and S) with the actual errors and
innovations is evaluated using the Normalized Estimation Error Squared (NEES) and Normalized
Innovation Squared (NIS) metrics. A significance level of α = 0.05 was chosen for the χ2 tests.
With α = 0.05, we obtain a 95% confidence interval for the test statistic, which is a standard
compromise between being too strict and too permissive. Therefore, for our correctly tuned filter,
we still expect about 5% of the NEES/NIS points to fall outside the bounds purely by chance.

14

Normalized Estimation Error Squared (NEES)
The NEES statistic ϵx(k) quantifies the normalized state estimation error x̃(k) = xtrue(k)− x̂(k).

• Statistic: The NEES statistic at time k is calculated as:

ϵx(k) = x̃(k)TP+(k)−1x̃(k)

where P+(k) is the filter’s updated state estimation covariance.

• LKF Adaptation: While the LKF estimates the perturbation state δx = x − xnom, it
still returns the full state and thus the error can be computed the same way instead of using
using the perturbation:

x̃(k) = (xtrue(k)− xnom(k))− (x̂+(k)− xnom(k)) = xtrue(k)− x̂+(k)

• EKF Adaptation: The EKF estimates the total state x̂, so the error is the total state
error anyway:

x̃(k) = xtrue(k)− x̂+(k)

• Test: The average NEES (ANEES) across N runs is compared to the χ2 confidence interval
with N · n degrees of freedom, where n = 4 is the state dimension.

χ2
Nn,α/2 ≤

N∑
i=1

ϵix(k) ≤ χ2
Nn,1−α/2

Normalized Innovation Squared (NIS)
The NIS statistic ϵy(k) quantifies the normalized measurement innovation (residual) ỹ(k) = ytrue(k)−
ŷ(k).

• Statistic: The NIS statistic at time k is calculated as:

ϵy(k) = ỹ(k)TS(k)−1ỹ(k)

where S(k) is the innovation covariance matrix.

• LKF Adaptation: The LKF innovation ỹ(k) uses the difference between the true measure-
ment and the linearized predicted measurement:

ỹ(k) = ytrue(k)− (h(x̂−(k))−H(xnom(k))δx̂−(k))

• EKF Adaptation: The EKF innovation uses the difference between the true measurement
and the predicted measurement from the full nonlinear measurement function h:

ỹ(k) = ytrue(k)− h(x̂−(k))

• Test: The average NIS (ANIS) across N runs should be compared to the χ2 confidence
interval with N · p degrees of freedom, where p is the time-varying measurement dimension
(i.e., 3× number of visible stations), but for simplicity, a constant p = 3 is considered).

χ2
Np,α/2 ≤

N∑
i=1

ϵiy(k) ≤ χ2
Np,1−α/2

3.1.3 Filter Tuning Methodology

The filter needs to be tuned by iterating on the "guessed" process noise covariance QKF (which
may not equal Qtrue) until both the ANEES and ANIS plots largely fall within their respective
1 − α confidence bounds. A consistent filter (ANEES/ANIS within bounds) indicates that the
filter’s covariance matrices are correctly reflecting the magnitude of the actual state estimation
errors and measurement innovations.

15

3.2 Linearized Kalman Filter (LKF)
The LKF performs its estimation in a loop, for each timestep, according to the specified sample
time.

3.2.1 Initialization

As an initial guess, the Linearized Kalman Filter is initialized with the following values:

δx̂+
0 = [0, 0, 0, 0]T

P+
0 = diag

(
σ2
x0, σ2

v0, σ2
x0, σ2

v0

)
= diag(1 · 10−6, 1 · 10−5, 1 · 10−6, 1 · 10−6)

Having an initial estimate of x̂ = xnom is just our best guess, as we don’t have any additional
information on what the initial perturbation could look like. Setting P+

0 as above, tells the filter
to trust the position estimate slightly more than the velocity estimate (higher certainty) and that
the initial estimate generally is quite good. Setting it as a diagonal matrix comes from the fact
that we don’t expect errors in these state variables to be correlated.

3.2.2 Time update/prediction step

δx̂−
k+1 = F̃kδx̂

+
k + G̃kδûk

P−
k+1 = F̃kP

+
k F̃T

k + Ω̃kQkΩ̃
T
k

The calculation of F̃k is described in Part I. In this orbit determination problem, the input to
the plant is not considered, so G̃kδûk = 0. Ω̃k is calculated using a similar Euler’s method
approximation to F̃k.

Ω̃k|nom[k] ≈ ∆T · Γ(t)|(t=tk)

3.2.3 Index Convention

Because the k=0 value of the state is an initial guess, the above is rearranged to obtain the estimate
based on the previous timestep, where applicable. δx̂−

k+1 is replaced with δx̂−
k , and δx̂−

k is replaced
with δx̂−

k−1, so for example:
δx̂−

k = F̃k−1δx̂
+
k−1

This has not been necessarily reflected in this report, but is reflected in the implementation.

3.2.4 Measurement update/correction step

When a measurement is available, the measurements info is treated as yk. Because the LKF
estimates perturbations, this is converted into an equivalent perturbation measurement based on
the difference with the expected measurement from the nominal trajectory at tk :

δyk+1 = yk+1 − y∗k+1

To handle measurements from multiple ground stations, each nominal measurement must be found
using the nominal state and the corresponding station, and they must be stacked, in a process very
similar to the DT simulation. Throughout this report, no distinction is necessarily made that a
"Stacked" version of the matrix is being used, and the matrix simply treated as having a size that
changes with time.

H̃k+1,i =
∂h

∂x i

∣∣∣∣
x=x̂−

k+1

. Hk =

H̃1

...

H̃n

 y∗k+1,i = h(x∗
k+1,i) Hk =

y∗k+1,1

...
y∗k+1,n


The equivalent Rk+1 must be found by combining the Rk+1 values in block diagonal form.

R =

[
R 0
0 R

]

16

In practice, though, there is only a maximum of two ground station measurements at any given
time, due to their spacing. However, when calculating the perturbation, care must be taken to
subsequently wrap the angle component! If the wrapped measurement perturbation is δy′k+1:

ϕ′
k =


ϕk − 2π ϕk > π

ϕk + 2π ϕk < −π

ϕk otherwise

Now this can be used to find the innovation vector for the measured perturbation vs the predicted
perturbation.

ey,k = δyk+1 − H̃k+1δx̂
−
k+1

The Kalman gain can be found with:

Kk+1 = P−
k+1H̃

T
k+1[H̃k+1P

−
k+1H̃

T
k+1 +Rk+1]

−1

The measurement covariance (which will also be used to evaluate the LKF) is found separately,
and also used to get the Kalman gain:

Sk = H̃k+1P
−
k+1H̃

T
k+1 +Rk+1 → Kk+1 = P−

k+1H̃
T
k+1[Sk]

−1

We can now find the estimate given the previous best estimate and latest measurement, again
using the innovation vector:

δx̂+
k+1 = δx̂−

k+1 +Kk+1(δyk+1 − H̃k+1δx̂
−
k+1) → δx̂+

k+1 = δx̂−
k+1 +Kk+1(ey,k)

Now the Kalman gain, measurement matrix, and covariance of the prediction estimate can be used
to calculate the updated estimate covariance.

P+
k+1 = (I −Kk+1H̃k+1)P

−
k+1

No Measurements
If no measurements are available, the best estimate and covariance for that timestep is the best
estimate and covariance based on previous predictions and measurements:

x̂+
k+1 = x̂−

k+1 P+
k+1 = P−

k+1

3.2.5 Output

The measurement covariance, innovation vector, and estimate covariance can all be used as-is, but
the full state estimate must be calculated from the state of the nominal trajectory at the particular
timestep.

δx(t) + xnom(t) = x(t)

3.2.6 Results

a. Plots for a "typical" simulation instance
The "typical" simulation instance is initialized with an arbitrary value beyond the variances used
for the monte-carlo, to show how large perturbations cause problems with the estimate. The initial
covariance chosen is the same as in the truth model testing.

δx0 = [0.0001, 0.005, 0.0001,−0.002]T

The plot below shows the simulated noisy measurements used to test and tune the linearized
Kalman Filter.

17

Figure 9: Typical Simulated Measurements

The plot below shows the state estimate from the linearized Kalman filter (LKF) compared
with a typical simulation state that correspond to and result in in the above simulated measure-
ments.

Because this is a small perturbation, the initial estimate follows closely with the truth model
state. As time goes on, the state drifts from the nominal trajectory, and the quality of the estimate
decays rapidly. The error goes far outside the expected uncertainty in the measurement. On this
scale, the uncertainty bounds are not visible, but the difference between the estimate and the truth
model is:

Figure 10: Discrete LKF State Estimate Compared with Simulated Measurement

18

Finally, the below plot shows the error state estimate from the LKF and the example truth
state. Again, error increases to the point where it is not possible to see the estimate error compared
to the uncertainty.

Figure 11: Linearized Kalman Filter Example Run Error

b. NEES test statistic points
These are the initial results for the NEES statistics of the Linearized Kalman Filter. As one can
clearly see, the values grow massively out of bounds, which indicates that a lot of tuning needs to
be done.

Figure 12: Initial result of NEES plot for LKF

19

It turns out there was actually more involved than just tuning the variances and parameters,
and after refining our code (mostly inconsistencies in indices) and then tuning the parameters,
LKF produced the following NEES plot:

Figure 13: Final ANEES plot for LKF
(full simulation)

Figure 14: Final ANEES plot for LKF (zoomed
into first 8500s)

As one can see in Figures 13 and 14, initially the error stays at or close to the expected bounds,
but after about 3000s into the simulation, the values start to slowly oscillate and these errors start
to accumulate until they increase exponentially after about 7000s. This behavior is to be expected
as the LKF linearizes about a fixed nominal circular orbit, whereas the true trajectory with process
noise changes over time. This accumulated error over time causes the linearization to break down.

c. NIS test statistic points
These are the initial results for the NIS statistics of the Linearized Kalman Filter. Same as with
the NEES statistics, also here one can see that massive tuning is needed.

20

Figure 15: Initial result of NIS plot for LKF

After massively updating the code and arriving at the desired values for Q,P0, LKF produced
the following NIS plot:

Figure 16: Final ANIS plot for LKF
(full simulation)

Figure 17: Final ANIS plot for LKF (zoomed into
first 8500s)

Figures 16 and 17 show, that much like for NEES, also NIS initially stays at or close the
expected bounds (with some outliers right from the beginning), but after about 2500s the NIS
value starts to massively increase.

21

3.3 Extended Kalman Filter (EKF)
3.3.1 Initialization and EKF setup

For the Extended Kalman Filter (EKF), we estimate the full nonlinear spacecraft state

xk = [Xk, Ẋk, Yk, Ẏk]
T ,

directly, rather than a perturbation about a nominal trajectory. The discrete–time nonlinear
dynamics and measurement models can be written as

xk+1 = f(xk, uk, wk), yk+1 = h(xk+1, vk+1),

where uk is the (zero) control input, wk is the process noise associated with unknown accelerations
in the X and Y directions, and vk+1 is the measurement noise in range, range rate, and elevation
angle from the ground stations.

The nominal circular orbit used throughout the project has radius

r0 = 6678 km,

so that the nominal initial state is

xnom,0 =


r0

0

0

r0

√
µ

r30

 =


6678

0

0

7.7258

 (km, km/s).

For the EKF we deliberately start from a slightly biased initial estimate with position and
velocity offsets

σx0 = 1 · 10−6 km, σv0 = 1 · 10−5 km/s,

so that the initial state estimate is

x̂+
0 = xnom,0 +


σx0

σv0

σx0

σv0


The corresponding initial covariance is chosen diagonal,

P+
0 = diag

(
σ2
x0, σ2

v0, σ2
x0, σ2

v0

)
= diag(1 · 10−6, 1 · 10−5, 1 · 10−6, 1 · 10−6),

which encodes larger initial uncertainty in velocity than in position, but does not assume any
cross–correlation between the states.

The truth–model simulation uses the provided continuous–time acceleration noise covariance
Qtrue and single–station measurement covariance Rtrue. For the EKF we introduce a separate
guessed acceleration covariance

QKF = 10−10I2,

and tune its magnitude using NEES/NIS tests (see Part 5(b,c)). The EKF measurement covariance
uses the same value as the truth model, i.e. RKF = Rtrue. When multiple stations are visible at a
given time, the filter builds

Rk = blkdiag
(
Rtrue, . . . , Rtrue

)
,

with one 3× 3 block per visible station.
At every time step, the required Jacobians are evaluated at the most recent EKF estimate: the

dynamics Jacobian Ak is evaluated at x̂+
k and the stacked measurement Jacobian H̃k+1 is evaluated

at x̂−
k+1.

3.3.2 Time update (prediction)

Starting from the previous estimate (x̂+
k , P

+
k), the EKF prediction step proceeds as follows.

22

State prediction. The nonlinear orbital dynamics are numerically integrated over the sampling
interval ∆tk with zero input,

x̂−
k+1 = Φ(x̂+

k , uk,∆tk),

using the same nonlinear dynamics routine as in the truth model. Because uk = 0 for this problem,
only gravity and process noise drive the motion.

Covariance prediction. To propagate the covariance, we linearize the dynamics about x̂+
k ,

Ak =
∂f

∂x

∣∣∣∣
x=x̂+

k

,

and approximate the discrete–time state transition and noise–influence matrices as

F̃k ≈ I +∆tk Ak, Ω̃k ≈ ∆tk Γ,

where

Γ =


0 0
1 0
0 0
0 1


maps the white acceleration disturbances in the X and Y directions into the state. The predicted
covariance is then

P−
k+1 = F̃kP

+
k F̃T

k + Ω̃kQKFΩ̃
T
k .

3.3.3 Measurement update

At the next measurement time, the filter uses whichever ground stations report measurements.
Because the propagated nonlinear state will not match the true state exactly, the set of stations that
are actually in view in the noisy truth simulation may differ slightly from what would be predicted
from the EKF state alone. In the implementation, we therefore always stack the measurements
from the station IDs that actually report at time k + 1, and construct the corresponding stacked
measurement vector and Jacobian using those same station IDs.

Each visible station contributes a range, range–rate, and elevation angle measurement. These
are stacked into a single measurement vector, and Rk+1 is built by repeating Rtrue along the block
diagonal.

Predicted measurement. Given x̂−
k+1 and the list of visible stations at time k + 1, the EKF

computes the predicted measurement

ŷ−k+1 = h(x̂−
k+1),

and the stacked measurement Jacobian

H̃k+1 =
∂h

∂x

∣∣∣∣
x=x̂−

k+1

.

Innovation and gain. The stacked innovation vector and its covariance are

ṽk+1 = yk+1 − ŷ−k+1, Sk+1 = H̃k+1P
−
k+1H̃

T
k+1 +Rk+1.

Because the elevation angle is wrapped to the interval [−π, π] in the truth model, the corresponding
entries of ṽk+1 are also wrapped to [−π, π] before computing Sk+1 and the Kalman gain, to avoid
large jumps when the angle crosses ±π.

The Kalman gain is then
Kk+1 = P−

k+1H̃
T
k+1S

−1
k+1.

23

Posterior update. Finally, we update the state and covariance at k + 1,

x̂+
k+1 = x̂−

k+1 +Kk+1ṽk+1,

P+
k+1 = (I −Kk+1H̃k+1)P

−
k+1.

This completes one EKF cycle, which is repeated for all K = 1400 steps with sampling time
∆t = 10 s.

3.3.4 Results

a. Typical single-run results

Before performing the full NEES and NIS consistency tests, we examine a single representative
EKF run driven by a nonlinear truth simulation with process noise Qtrue and measurement noise
Rtrue. Figures 18–20 summarize the behaviour of the filter for this run.

Figure 18 shows the true noisy state trajectory (black) and the EKF posterior mean (blue) for
all four states, along with the corresponding ±2σ bounds derived from the diagonal of P+

k (red
dashed curves). The EKF starts from a noticeably biased initial condition, but within the first few
hundred seconds the estimated orbit locks onto the true trajectory and the covariance collapses to
realistic values. Over the remainder of the trajectory, the estimated states track the truth almost
exactly, and the true state stays well inside the ±2σ envelopes.

Figure 18: Ground truth vs. EKF estimated states with ±2σ covariance bounds for all four state
components.

To better assess the estimation accuracy, Figure 19 shows the state estimation error ex(k) =
x̂+
k − xtrue(k) together with the corresponding ±2σ bounds. The position errors remain on the

order of one meter, while the velocity errors are on the order of 10−3 km/s, and the errors are
generally well contained within the ±2σ envelopes. There is no obvious long–term bias or drift,
which is consistent with a well–tuned filter and a reasonable choice of QKF.

24

Figure 19: Error in EKF estimated states with ±2σ covariance bounds.

Figure 20 compares the noisy simulated measurements from the nonlinear truth model (blue
points) with the EKF predicted measurements h(x̂−

k) (red points) for range, range rate, and eleva-
tion angle. The EKF predictions closely track the noisy measurements during every station pass,
including gaps when no stations are visible, indicating that the filter is correctly fusing information
from the switching measurement set. The predicted measurements appears to properly filter the
noise from the provided measurements.

Figure 20: Nonlinear simulated measurements vs. time (blue) and EKF predicted measurements
(red) for range, range rate, and elevation angle.

25

b. NEES test statistic points

Figure 21: Initial result of NEES plot for EKF

These are the initial results for the NEES statistics of the Extended Kalman Filter. As one can
clearly see, the values grow massively out of bounds, which indicates that a lot of tuning needs to
be done.

After tuning and tweaking the code, the final NEES plot for the EKF looks like this:

Figure 22: Final NEES plot for EKF

Figure 22 clearly shows that while the spread of the error is largely correct, we still arrived at a

26

much lower average (about 1.5) than expected (4=n). However, compared to LKF, the error stays
largely the same during the whole simulation of 14,000s and doesn’t increase exponentially.

c. NIS test statistic points

Figure 23: Initial result of NIS plot for EKF

These are the initial results for the NIS statistics of the Extended Kalman Filter. While the
results for NIS are very different than with the LKF, additional work is needed to find out why
ANIS seems to stay at or around zero.

After finding the error in our code and tuning the system, the final NIS plot for the EKF looks
very promising:

27

Figure 24: Final NIS plot for EKF

Figure 24 clearly shows that while there are some outliers, we largely stay within the bounds,
showing high measurement consistency for the whole simulation of 14000s and doesn’t increase
exponentially or fluctuate.

3.4 State trajectory estimation and comparison
For Part 6 we applied both the linearized Kalman filter (LKF) and the Extended Kalman Filter
(EKF) to the provided observation log orbitdeterm_finalproj_KFdata.mat. Both filters use the
same sampling time ∆T = 10 s, the same initial covariance

P0 = diag
(
σ2
x0, σ2

v0, σ2
x0, σ2

v0

)
= diag(1 · 10−6, 1 · 10−5, 1 · 10−6, 1 · 10−6),

and the same process and measurement noise settings. The process noise covariance used in all
runs is

QKF = 1 · 10−10 · I2 =

[
10−10 0
0 10−10

]
,

The measurement noise covariance is taken directly from the data file, RKF = Rtrue.
Figure 25 shows the LKF estimated states with ±2σ bounds computed from the filter covariance.

The position components X and Y follow the expected sinusoidal orbit and the uncertainty stays
small compared to the orbital radius. However, in the velocity plots (Ẋ and Ẏ) the LKF develops
noticeable small-scale oscillations toward the end of the time window. These are expected and
seem to be a result of the linear model struggling with the nonlinear dynamics.

Figure 26 shows the same plots for the EKF with the same QKF and RKF. Here the position
and velocity trajectories are smooth over the entire 14,000 s window, and the ±2σ envelopes remain
narrow. Because the EKF repeatedly relinearizes about its current state estimate instead of a fixed
nominal orbit, it handles the nonlinear two–body dynamics better and does not see the deviation
as the time step increases like the LKF does.

28

Figure 25: Linearized KF estimated states with
±2σ bounds.

Figure 26: EKF estimated states with ±2σ
bounds.

To compare the filters directly, Figure 27 overlays the LKF and EKF state estimates. The
position estimates from the two filters lie on top of each other which confirms that the estimated
parameters are correct. Since we do not have the true state for this data log, we cannot compute
an actual error, but it would be expected for a physically reasonable orbit to not have these rapid
jumps in velocity. This would strongly suggest that the EKF is doing a better job of tracking the
underlying motion with the same noise assumptions.

Figure 27: Direct comparison of Linearized KF (blue) and EKF (red) estimated states.

Finally, Figure 28 compares the logged measurements to the EKF predicted measurements for
range, range rate, and elevation angle. The red EKF predictions lie almost exactly on top of the
blue measurement points for every station pass, including the gaps when no station is visible. This
suggests that the EKF state estimate is consistent with the actual data stream and that the chosen
QKF and RKF values are reasonable for this problem.

29

Figure 28: Observation log measurements (blue) versus EKF predicted measurements (red).

Overall, both filters give usable state estimates on the observation log, but the EKF does a
better job. With the same initial conditions and noise settings it produces smoother, more realistic
states while matching the measurements. The LKF starts to show artificial oscillatory motion
because it is tied to a fixed linearization about the nominal orbit, whereas the EKF continually
updates its linearization around the current estimate and better captures the nonlinear orbital
dynamics.

30

4 Estimation Haiku - Advanced Question 13
Noisy data in

Kalman learns and updates it
Corrected path out

31

List of Figures
1 Vehicle position visualization. 7
2 DT Simulation States and Nominal States . 10
3 DT Linearized Simulated State Perturbations . 10
4 DT Linearized Simulated Measurements . 11
5 States vs. Time, Nonlinear Dynamics Simulation 11
6 Nonlinear Simulated Measurements vs. Time . 12
7 DT Linearized vs. Nonlinear Simulation States . 13
8 DT Linearized State Error vs. Nonlinear Simulation States 13
9 Typical Simulated Measurements . 18
10 Discrete LKF State Estimate Compared with Simulated Measurement 18
11 Linearized Kalman Filter Example Run Error . 19
12 Initial result of NEES plot for LKF . 19
13 Final ANEES plot for LKF

(full simulation) . 20
14 Final ANEES plot for LKF (zoomed into first 8500s) 20
15 Initial result of NIS plot for LKF . 21
16 Final ANIS plot for LKF

(full simulation) . 21
17 Final ANIS plot for LKF (zoomed into first 8500s) 21
18 Ground truth vs. EKF estimated states with ±2σ covariance bounds for all four

state components. 24
19 Error in EKF estimated states with ±2σ covariance bounds. 25
20 Nonlinear simulated measurements vs. time (blue) and EKF predicted measurements

(red) for range, range rate, and elevation angle. 25
21 Initial result of NEES plot for EKF . 26
22 Final NEES plot for EKF . 26
23 Initial result of NIS plot for EKF . 27
24 Final NIS plot for EKF . 28
25 Linearized KF estimated states with ±2σ bounds. 29
26 EKF estimated states with ±2σ bounds. 29
27 Direct comparison of Linearized KF (blue) and EKF (red) estimated states. 29
28 Observation log measurements (blue) versus EKF predicted measurements (red). . 30

5 Appendix

5.1 Appendix A: Equation Derivation

For Earth-Centered Coordinates

X
z

1Xcy
cerf: (:,icer- f :ff. i :ki : ? -

-ien.fu(x)
Find Dynamics Jacobian(x) :

AlG) =然(彎与
Easy Ones :

f
. (x) = Xz =⇒ [0 10 0] tz(x) = ts =⇒ = [0 0 0 1]

fz(x) Partial Derivatives:

fz(x) =- u+ where

= (- µ x」 (x3 + x
3) w ⑩= 表 (-μ x、 (x 3 + * z

)呵+ n 、‰ 、@
=
-m((x, 2 + xy3)

-3k
+ x,. (3/2) . (x,

2
+ Xa2)-5 . 2x

,] (Product Rule) = -

Mx ,
.)- 3k) (X,

2
+ Xy3)

-512
. 243

= 3 µ 4
,

* 3 (*,
? ☆×)

-5k
ュ
µ [5x

,

3
a か35当

に- る{*、3 + 4}-
呼]

=
- M(x,2

+ Xz2)
-

5/2[(X,

3
= xy2) - 3x,) 붉 3 m 밤법

*3

ェ 一 所 (
x
, 3 ↓*5

)~

5は(
* % - ②

x)
J8s M(2x,

2
- Xz3)

* 평

r
5

는 o (trivial) 뽑 o (trivial)

쌌지 µ (2 *:*
)0 3

µ .
*
× " 이

fn(X) Partial Derivatives :

As f = fu where X,) X3 ,
we can swap X , and X32

from the result of Cf2/x to solve for Cf4/Ex.

µ (ち皙一)3MX, X3았며 ㅣ O 이⑤
r

5

ㅇ ㆁㆁ、

M(2x,

2
- Xz3) 3MX, X3

ㅇ ㅇ
5

.

0

.
A×) = 15ㅣ 1

5

uㅇ ㅇㅇ

3MX, X3 性 (2崎いふㅇ ㆁ

r
5

33

Find Enput Jacobian B(X) :

f(x) = Xz
\

B(3上岩 =
(

橤鑿鑿 fn(x) = -m- + m , + 5-
un r= Bzl×3f a Xas ㅣ

fy{x] ≈- mtma ωi

Find Disturbance Jacobian F(X) :

f(x) = Xz

falx) = - 品st au ,tionomoer Pa
*ft ㅣ" 지

*…
꽃꽃맞위= 용 : !3l×)f a xs

f
(x)之 -以 +µ z 小w

Find Measurement Jacobian #(x) = [(X) :

Y
∞(t) = ()- vical

unoe : pict)=*- X*(t)]
2

+ (Y(t)- Y;(t)]2

↑℃ {t) =

[x{ε} -xǒ
(

z3]。 [义{ε] - ※☆[£]]← (y[☆]- Ys
[ε3} 。 [yEε] ~y☆{t}

pists

o(t] = tan"(it }
:Ys'

4,ε))

t(Y)= 装=(癌癌川
Find Range Jacobian where px(4- Xj(t(]2 + (xy- Yj(t)]>

装 = 言 ((x 、 _xs + (×>~}
^)
”

。((x、 (o)_ - 4 s '(>]㎡+ [xs~ s >]㎡) As po is symetrical about Y,>Xy :

X] <) YS

=

- z[X , (t) - xj(z)]
X {t7,

- Y '
s

{t]-xs(t]" + (xs-

45t)>
=

(X , (t) - Xj(t))" + (Xy - yj(z)72)
か(ょ3 - xら(£)器 “

[x . (t) . × s(E]
㎡

+ [xs - Ys(t3]
" 器 =器 = 0 (trovias as sia f(x

,
× s) ¢ {×2 ,

×u})

器 (答が7,
0 」 *

*-悲 、 of

34

:Find Range Rate Jacobian

β℃ (ε) =

[x(t]- x(t)] 。(※ (←] - ※%(t)]+(1 (t) - ∵s[ε],(Y6 ☆ -※i[ε] (x
. -Xi(t)]- (×z-※(] + (X

3 -1
,[t] - [xa - ↑℃Ct》

:号=

#-x*s(t)]
2

+ (Xy - Yj(t)]2*- X*(t)]
2

+ (Y(t)- Y;(t)]2
designateto

make cleaner

Find Partial Derivatives of numerator (c) :

. *
}
.

[
{x{ε]-×℃ε3]。[☆ {←]- ※ [ε3]+{ y[ε]- ^

1s℃[←>} 。 [n6{&} - ☆{ε]]]=☆ {☆} - ※%[E}

。 ∞z) ∞.{{x[←]-x(t) } 。[☆{ ε]-※☆{ε3]←[Ψ{t]-Ys[ε3 } .[ns{) 、y☆{ε3}] ≈x{t }→xt3

。 ×如]
[
{x<ε]- ×(ε3] , [☆←} - ※☆[←]] t(y{ε] -Ys℃[ε 3]。[x (]-※☆[ε) }]=x 6 ~↑☆(t]

。 ×0)
±
[x(ε]-× (t]。[x (←]-※ ※{ε3]+ [y[ε]- Ys[ε3} 。 [Y☆ - ※☆[ε]]] = 4{ε] -4

s(ε7

Find Partial Derivatives of denominator() (found previously) :

荒 =器: 皆× 5] 装 : 0歳 ==
”感 씀다 .

Find은
2pi (t) b .品

“
器. =β . (※←) -x※ ε] -

a.
t

☆= (x(ε 1- xi(t
]

- a(x(←) - x%(t]
⇌

β 03a *

ai: y
,=

[
x . x'sCt》.

a

[x.(t) - x :[t>]
P 03

Find
2pi(t)

=

品a
=
。[×(ε)_x (]- a - [0]

2*s 고

dǒi[t)=
x

.
[
t] - x☆←了

6X2 P

Find“ =

器皆 =(-

Y
:

[
a]=a _ "”= [ylt

)-

yi (aD- a [Xs. -.is]
② P ㎥

dji(t) =

[x(t) - YS(t)]
- a(Xy-Y]

Jxg P P

Find
dfi(t)

=

b-
a

- 乳= PeL L)s-、 is(t1] - a . (o)
pacy

6pi(t)
=

X(t) - Yj(t)
6X4 β

6pi = [(Xx(t)) -a[xt) -X(t) ,
X()-X)

,
(t-YA a(X - Yj)

, YsY}03 PP ㎥

lebere a = {
x .-xicts} [xa -x;Ct3} tfx

3 -YsLt>} o [t4 . 4℃[t3}

35

Find Elevation Angle Jacobian
o = tan~(災砦:)

As do = f(x , xs) and ¢{42 ,×ω
}器 = 0 옳 = 이

Find
∅談淡

= 0 +((←心
)…(ask>- 1&5)

0

(X ,
- xo(←))

?

Xs -
Y 'i{t}

、

=←

(X ,
o x§{t3)

Σ

Jo ∅ s $3
- Y☆ (*}) α

2 *
“

」 (災皆:、)?
σ

(

X、- ×i(εs)
?

2 o →《 s
- Y'(ょ]]

∂ x
,

=

{x ,
- x[t3 } ☆+{☆

z -份结]
P

2 o= 一* 3
- %(t3)

d *
고

‰

Find :

^Joo

」 ×, “ + (総:感)㎡前
(

*) -Y %* G -*歩

(YLG
^-YiLyiCar-
xitai)-s,ihanisilk,

√

'∅
ㅣ66i

= {
山

, (t] - xs(ε)小*; ↓+(P
∅2 o 4

, [t] - *5[£]
≥

J3 ↑ + (紫皆ご袋(ε、
)

?

s(t) - xe(t、.

Jo 4
. [£] . t§(t]

≥

6Xy(X ,
- xj(z))3 + (xy - Yj(t))2

6di= X
, (t) - Xj(t)

ats Pz

。按=(*3-) 、 0 、“
, 0]

36

Cx) =ū (x)=* (蘑
i‰

ㅇ
Pi

이4 Y%
-

a st0 IYotcan 些 P : Pi

4¿
ㅇ ㆁ

㎡

where : XXi = X - X(t) = X
,
- Xj(t)

40 = X - jiCt} a t :ti(t]

4 Y : = y . 4 s(t] = *;Yi[t]

4ii= 1-is (t)=]

a a Ix0btt 4Y 4yi

P = XXz + xyz

Continuous Time :

X=Fl.Y(t) + Blyron u(E) +Mv

Y =[I X(A) + Blynom : E+

where :

ㅣ ㅇ

3MX, X3µ (2x . xs)
ㅇ 히ㅣ ☆*(x) = 55

ㅇ ㅇ ㅇ

3MX, X3
µ (2崎一ㅇ ㅇ☆

r
5

γ= 4
,

2
5 *~where

割割ㅣㅣ
i‰

ㅇ
where : XXi = X - X(t) = X

,
- Xj(t)

1 Pi 480=成-Xit)にな)
ㅇ

山回 4 ~ 45 [t) = * ;Ys(t)4 %- a 山0δ (x) =+ (x)=器器 4π 1íP ㎥ Pi L " 0 - if -1; (t]=
可(t)

^

a a 4t0 5 to t @Y 4y::山火 4 xi
ㆁㅇ

? 고
P = XXz + Gyz

37

Discrete Time (Euler Approach)
Gives the following GT system :

8x(t) = ApSx(t) + Byfu(t) + Misw(t)

We can approximate the derivative with :

8Xm+
- 6xx

= Sx(t) = ApSX,
+ BSup + Nwi

运子

스
6 Xk+

= GXx + XT.Ax · SXp + XT. B ·Sus + Xt . No won
__ー

rs
“

.m
次

δ

tis
Therefore :

Sxaty - Fs . 8xist ǒre frst fic cwo

Ye H .
.

8 *is

where :

↑ ㆁ

M(2x,

2
- Xz3) MX, X33

ㅇ

ㅇ

⑮- (Ftar. .이)r
5ㅣ ㅇ ㅇ σ

3MX, X3
µ (3崎 っx)。ㅇ ㆁ5

0
乌

r= x, 2 t*~where

5n = m. [%%, En=
㎡ where : XXi = X - X(t) = X

,
- Xj(t)

ㆁ
Pi 。成 -*ot) =合⑮(E>

웨 山% = 4 ~ 45t) = 弩 Y分(>
Acor :"I

ae- oaeP ㎥ 4 Tc =1 -js(t)=迎(>i

a a 4t0 itiet Iy sy::山だ α Xi
^ ㆁㆁ
2 P2

P = XXz + xyz

38

5.2 Appendix B: MATLAB Code

39

File: A_jacobian.m

1 function A = A_jacobian(x, mu)
2 %A_JACOBIAN Continuous-time dynamics Jacobian A(x) = df/dx.
3 %Inputs:
4 % x - 4x1 state [X; Xdot; Y; Ydot]
5 % mu - gravitational parameter
6

7 %Output:
8 % A - 4x4 Jacobian matrix evaluated at x
9

10 %Pull out and calculate commonly used variables
11 x1 = x(1);
12 x3 = x(3);
13 r = sqrt(x1^2 + x3^2);
14 r5 = r^5;
15

16 %Calculate Matrix Inputs
17 A_11 = mu * (2 * x1^2 - x3^2) / r5;
18 A_13 = 3 * mu * x1 * x3 / r5;
19 A_31 = 3 * mu * x1 * x3 / r5;
20 A_33 = mu * (2 * x3^2 - x1^2) / r5;
21

22 %Form Output Matrix
23 A = [0 1 0 0;
24 A_11 0 A_13 0;
25 0 0 0 1;
26 A_31 0 A_33 0];
27 end

Listing 1: Code for A_jacobian.m

File: DTLinearizedKF.m

1 function [P_plus, x_hat_plus, P_minus, x_hat_minus, e_y, S] = DTLinearizedKF(P_0, mu_0, N, Dt, Q, R, ←↩
ydata,params,t_0)

2 mu = params.mu;
3 P_plus = P_0;
4 x_hat_plus = mu_0’;
5 dx_hat_plus = mu_0’ - getXNom(t_0)’;
6 P_minus = [];
7 x_hat_minus = [];
8 dx_hat_minus = [];
9 t = zeros(N + 1);

10 t(1) = t_0;
11 n = size(mu_0,2);
12

13 ydata = cellfun(@(ydata_k) reshape(ydata_k,4,[]), ydata, ’UniformOutput’,false);
14 y = cellfun(@(ydata_k) ydata_k(1:3,:), ydata, ’UniformOutput’,false);
15 visible_stations = cellfun(@(ydata_k) ydata_k(4,:),ydata, ’UniformOutput’,false);
16 % Clean visible_stations by removing NaN entries
17 visible_stations = cellfun(@(x) x(~isnan(x)), visible_stations, ’UniformOutput’, false);
18

19 e_y = cell(1, N); % Innovation vector dy_k at each step
20 S = cell(1, N); % Innovation covariance matrix S_k at each step
21 for k = 1:N
22 i = k + 1;
23 i_prev = i - 1;
24 t_k_prev = t(i-1);
25 t_k = t_k_prev + Dt;
26 t(i) = t_k;
27 %% Eulerized DT Jacobians
28 x_nom_k_prev = getXNom(t_k_prev)’;
29 [~, ~, ~, ~, Gamma_k, F_k, G_k, ~, ~] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,1,mu);
30 Omega_k = Dt*Gamma_k;
31 %getDTLinearizedMatrices()
32 %% Prediction Step

40

33 %
34 % <include>kalmanFilterPrediction.m</include>
35 %
36 P_plus_k_prev = P_plus(:,:,i_prev);
37 dx_hat_plus_k_prev = dx_hat_plus(:,i_prev);
38 u = zeros(2,1); % TODO: Do we need u data?
39 [dx_hat_minus_k, P_minus_k] = DTLinearizedKFPrediction(...
40 dx_hat_plus_k_prev,P_plus_k_prev, ...
41 F_k,G_k,Omega_k,Q,u);
42 P_minus(:,:,k) = P_minus_k;
43 dx_hat_minus(:,k) = dx_hat_minus_k;
44 x_nom_k = getXNom(t_k)’;
45 x_hat_minus_k = dx_hat_minus_k + x_nom_k;
46 %% Correction Step
47 H_k = [];
48 visible_stations_k = visible_stations{k};
49 visible_stations_nom_k = [];
50 y_nom_k = [];
51 dy_k = [];
52 y_k = y{k};
53 y_k = reshape(y_k,3,[]);
54 N_visible_stations_k = size(visible_stations_k,2);
55 for i_meas = 1:N_visible_stations_k
56 y_k_i = y_k(:,i_meas);
57 stationID = visible_stations_k(i_meas);
58 if (stationID>0)
59 [~, ~, ~, ~, ~, ~, ~, H_k_i, ~] = getLinearizedMatrices(x_nom_k,t_k,Dt,stationID,mu);
60 [y_nom_k_i, ~] = GetStationMeasurement(x_nom_k, t_k, stationID);
61

62 else
63 % TODO: Check if this is correct handling for when no station
64 % sees the spacecraft
65 H_k_i = [];
66 y_nom_k_i = zeros(3,1);
67 y_k_i = zeros(3,1);
68 end
69 % If we have a measurement, assume it’s visible.
70

71 dy_k_i = y_k_i - y_nom_k_i;
72 %% Correct angle perturbation for quadrant
73 phi_k_i = y_k_i(3);
74 phi_k_norm_i = y_nom_k_i(3);
75 dphi_k_i = phi_k_i - phi_k_norm_i;
76 % Bound the perturbation to [-pi/2
77 if dphi_k_i > pi
78 dphi_k_i = dphi_k_i - 2*pi;
79 end
80 if dphi_k_i < -pi
81 dphi_k_i = dphi_k_i + 2*pi;
82 end
83 dy_k_i(3) = dphi_k_i;
84 dy_k = [dy_k; dy_k_i;];
85 y_nom_k = [y_nom_k; y_nom_k_i;];
86 H_k = [H_k; H_k_i;];
87 end
88 [p_k,~] = size(H_k);
89 % TODO: track measurements by station...
90 measurementNotAvailable = (p_k == 0);
91 if measurementNotAvailable % measurements not available
92 dx_hat_plus_k = dx_hat_minus_k;
93 P_plus_k = P_minus_k;
94 e_y_k = {};
95 S_k = {};
96 else % measurements available
97 R_diag = mat2cell(repmat(R,1,N_visible_stations_k),3,3*ones(1,N_visible_stations_k));
98 R_k = blkdiag(R_diag{:});
99

100 [e_y_k, dx_hat_plus_k, P_plus_k,S_k,~] = DTLinearizedKFCorrection(...
101 dx_hat_minus_k,P_minus_k,dy_k, ...

41

102 H_k,R_k);
103 end
104 e_y{k} = e_y_k; % Store current innovation vector
105 S{k} = S_k; % Store current innovation covariance matrix
106 P_plus(:,:,i) = P_plus_k;
107 dx_hat_plus(:,i) = dx_hat_plus_k;
108 x_hat_plus_k = dx_hat_plus_k + x_nom_k;
109 x_hat_plus(:,i) = x_hat_plus_k;
110

111 end
112 x_hat_plus = x_hat_plus’;
113 x_hat_minus = x_hat_minus’;
114 end

Listing 2: Code for DTLinearizedKF.m

File: DTLinearizedKFCorrection.m

1 function [e_y_k, x_hat_plus_k, P_plus_k,S_k,y_hat_minus_k] = DTLinearizedKFCorrection(...
2 x_hat_minus_k, P_minus_k, y_k,...
3 H_k,R)
4 y_hat_minus_k = H_k*x_hat_minus_k;
5 e_y_k = y_k - y_hat_minus_k;
6

7 N_visible_stations_k = numel(y_k)/3;
8 for i_phi_k = 3*(1:N_visible_stations_k)
9 e_phi_k = e_y_k(i_phi_k);

10 % Bound the perturbation to [-pi/2
11 if e_phi_k > pi
12 e_phi_k = e_phi_k - 2*pi;
13 end
14 if e_phi_k < -pi
15 e_phi_k = e_phi_k + 2*pi;
16 end
17 e_y_k(i_phi_k) = e_phi_k;
18 end
19 S_k = H_k*P_minus_k*H_k’ + R;
20 K_k = (P_minus_k*H_k’)/S_k;
21 x_hat_plus_k = x_hat_minus_k + K_k*(e_y_k);
22 [n,~] = size(x_hat_minus_k);
23 P_plus_k = (eye(n) - K_k*H_k)*P_minus_k*(eye(n) - K_k*H_k)’+K_k*R*K_k’;
24

25 end

Listing 3: Code for DTLinearizedKFCorrection.m

File: DTLinearizedKFPrediction.m

1 function [x_hat_minus_k, P_minus_k] = DTLinearizedKFPrediction(...
2 x_hat_plus_k_prev, P_plus_k_prev, ...
3 F_k, G_k, Omega_k, Q_k, u_k)
4

5 x_hat_minus_k = F_k*x_hat_plus_k_prev + G_k*u_k;
6 P_minus_k = F_k*P_plus_k_prev*F_k’ + Omega_k*Q_k*Omega_k’;
7 end

Listing 4: Code for DTLinearizedKFPrediction.m

File: DTMeasurementSimulationStep.m

1 function [y_k] = DTMeasurementSimulationStep(x_k_prev, y_k_prev, ...
2 H, R)
3 if y_k = []
4 end

Listing 5: Code for DTMeasurementSimulationStep.m

42

File: DTSimulation.m

1 function outputs = DTSimulation(Q,R,dx_0,T,Dt,params)
2 %% Config
3 mu = params.mu;
4 N_stations = 12;
5 % N_stations = 2;
6 N = T/Dt;
7 t = 0:Dt:T;
8 N_x = numel(t);
9 % N_y = N_x - 1;

10 N_y = N_x;
11 n = numel(dx_0);
12 x_nom_0 = getXNom(t(1))’;
13 x_0 = dx_0 + x_nom_0;
14 outputs.dx = zeros(N_x,n);
15 outputs.x = zeros(N_x,n);
16 outputs.x_nom = zeros(N_x,n);
17 outputs.y = cell(N_y,1);
18 outputs.dy = cell(N_y,1);
19 outputs.H = cell(N_y,1);
20 outputs.t = t;
21 outputs.dx(1,:) = dx_0;
22 outputs.x(1,:) = x_0;
23 outputs.x_nom(1,:) = x_nom_0;
24 outputs.visible_stations = cell(N_y,1);
25 %% State Simulation
26 for k = 1:N
27 %% Get Parameters
28 i = k + 1; % x(k = 0) == x(i = 1), x(k = 1) == x(i = 2), ...
29 % i_x = k + 1; % x(k = 0) == x(i = 0), x(k = 0
30 % i_y = k; % y(k = 1) == y(i = 1), ..
31 dx_k_prev = outputs.dx(i-1,:)’;
32 t_k = t(i);
33 x_nom_k_prev = outputs.x_nom(i-1,:)’;
34 Q_k = Q; % TODO: Update
35 R_k = R; % TODO: Update
36 %% State Simulation Step
37 [~, ~, ~, ~, ~, F_k, ~, ~, ~] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,1,mu);
38 % Process Noise
39 if all(Q_k == 0)
40 w_k = zeros(size(dx_k_prev));
41 else
42 S_w_k = chol(Q_k,’lower’); % cholesky decomposition of Q_k
43 q_w = randn(n,1); % random number
44 w_k = S_w_k*q_w; % process noise
45 end
46 dx_k = F_k*dx_k_prev + w_k; % propogate state x(k-1) -> x(k)
47 x_nom_k = getXNom(t_k)’;
48 x_k = dx_k + x_nom_k;
49 %% Measurement Simulation Step
50 H_k = [];
51 visible_stations_k = [];
52 visible_stations_nom_k = [];
53 y_nom_k = [];
54 for stationID = 1:N_stations
55 [~, ~, ~, ~, ~, ~, ~, H_k_i, ~] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,stationID,mu);
56 [y_nom_k_i, ~] = GetStationMeasurement(x_nom_k, t_k, stationID);
57 [~, is_visible] = GetStationMeasurement(x_k, t_k, stationID);
58 if is_visible
59 y_nom_k = [y_nom_k; y_nom_k_i;];
60 visible_stations_k = [visible_stations_k stationID];
61 H_k = [H_k; H_k_i;];
62 end
63 end
64 [p_k,~] = size(H_k);
65 measurementNotAvailable = (p_k ~= numel(y_nom_k)) || (p_k == 0);
66 if measurementNotAvailable % measurements not available

43

67 y_k = [];
68 else % measurements available
69 mu_dy_k = H_k*dx_k;
70 if all(Q_k == 0)
71 v_k = zeros(size(mu_dy_k));
72 else
73 [p,~] = size(H_k);
74 S_v = chol(R_k,’lower’); % cholesky decomposition of R_k
75 q_v = randn(p,1); % random number
76 v_k = S_v*q_v; % measurement noise
77 end
78 dy_k = mu_dy_k + v_k;
79 y_k = y_nom_k + dy_k;
80 end
81 %% Store Updated Parameters
82 outputs.dx(i,:) = dx_k’;
83 outputs.x_nom(i,:) = x_nom_k’;
84 outputs.x(i,:) = x_k’;
85 outputs.y_nom{i} = y_nom_k’;
86 outputs.dy{i} = dy_k’;
87 outputs.y{i} = y_k’;
88 outputs.H{i} = H_k;
89 outputs.visible_stations{i} = visible_stations_k;
90 end
91 end

Listing 6: Code for DTSimulation.m

File: EKF_Orbit.m

1 function [xhat_hist, P_hist, innov_cell, S_cell, visible_ids_cell, yhat_cell] = EKF_Orbit(ydata, tvec, ←↩
x0_hat, P0, Q_matrix, R_matrix, mu, R_E, omega_E)

2 %Runs an Extended Kalman Filter for a single measurement sequence
3 %
4 %Inputs
5 % ydata - 1xN cell array of measurements. ydata{i} = m_i x 1 measurement
6 % associated with the measurement at time tvec(i). m_i = 3 * (# visible stations)
7 % tvec - 1xN double time vector associated with the time of each measurement [seconds]
8 % x0_hat - 4x1 initial state estimate
9 % P0 - 4x4 initial covariance

10 % Qtrue - 2x2 process noise covariance matrix applied to acceleration disturbances
11 % Rtrue - 3x3 measurement noise covariance matrix for each station
12 % mu - Earth gravitational parameter [km^3/s^2]
13 % R_E - Earth radius [km]
14 % omega_E - Earth rotation rate [rad/s]
15 %
16 %Outputs
17 % xhat_hist - 4xN double matrix of posterior state estimates
18 % P_hist - 4x4xN double matrix of posterior covariance matrices
19 % innov_cell - 1xN cell array of innovation vectors v_k = y_k - yhat_k
20 % S_cell - 1xN cell array of innovation covariance matrices S_k
21 % visible_ids_cell - 1xN cell array of visible station indices at each time step
22 % yhat_cell - 1xN cell array of predicted measurement vectors h(xhat_minus)
23

24 %Get measurement length
25 N = length(tvec);
26 numStates = 4;
27

28 %Preallocate output variables
29 xhat_hist = zeros(numStates,N);
30 P_hist = zeros(numStates,numStates,N);
31 innov_cell = cell(1,N);
32 S_cell = cell(1,N);
33 visible_ids_cell = cell(1,N);
34 yhat_cell = cell(1,N);
35

36 %Initialize state estimate and covariance for time tvec(1)

44

37 xhat_plus = x0_hat;
38 P_plus = P0;
39

40 %Add to output arrays
41 xhat_hist(:,1) = xhat_plus;
42 P_hist(:,:,1) = P_plus;
43 innov_cell{1} = [];
44 S_cell{1} = [];
45 visible_ids_cell{1} = [];
46 yhat_cell{1} = [];
47

48 %Define Gamma (constant)
49 gamma = [0 0;
50 1 0;
51 0 0;
52 0 1];
53

54 %Assume input zero at all times
55 u_k = [0; 0];
56

57 %Extended Kalman Filter loop
58 for k = 1:(N-1)
59 %Time step
60 dT = tvec(k+1) - tvec(k);
61

62 % Now propagate using nonlinear dynamics
63 xhat_minus = propagate_orbit(xhat_plus, u_k, dT, mu);
64

65 %Time update / prediction
66 A_tilde_k = A_jacobian(xhat_plus, mu);
67 F_tilde_k = eye(numStates) + dT*A_tilde_k;
68 Omega_tilde_k = dT * gamma;
69

70 P_minus = F_tilde_k*P_plus*F_tilde_k’ + Omega_tilde_k * Q_matrix * Omega_tilde_k’;
71

72 %Measurement data at time t_{k+1}
73 measurement = ydata{k+1};
74

75 %If no measurements, prediction only
76 if isempty(measurement)
77 xhat_plus = xhat_minus;
78 P_plus = P_minus;
79 xhat_hist(:,k+1) = xhat_plus;
80 P_hist(:,:,k+1) = P_plus;
81 innov_cell{k+1} = [];
82 S_cell{k+1} = [];
83 visible_ids_cell{k+1} = [];
84 yhat_cell{k+1} = [];
85 continue
86 end
87

88 %Extract station IDs and number of visible stations
89 station_ids = measurement(4,:)’;
90 n_vis = numel(station_ids);
91

92 %Build measurement vector y_meas by stacking [rho; rho_dot; angle] columns
93 y_meas = reshape(measurement(1:3,:),3*n_vis,1);
94

95 %Measurement update / correction step
96 t_k1 = tvec(k+1);
97 [yhat_minus, H_tilde_k, ~] = H_jacobian(xhat_minus, t_k1, station_ids, R_E, omega_E);
98

99 %Force predicted measurement to column
100 yhat_minus = yhat_minus(:);
101

102 %Store predicted measurement and station IDs
103 yhat_cell{k+1} = yhat_minus;
104 visible_ids_cell{k+1} = station_ids;
105

45

106 %Form measurement noise covariance for n_vis stations
107 R_k = R_matrix;
108 for j = 2:n_vis
109 R_k = blkdiag(R_k,R_matrix);
110 end
111

112 if(k == 21 || k == 22)
113 abc = 1;
114 end
115

116 %Innovation
117 e_tilde_k = y_meas - yhat_minus;
118

119 %Wrap innovations to [-pi, pi]
120 for j = 1:n_vis
121 angle_idx = 3*j; % Every 3rd element is an angle
122 e_tilde_k(angle_idx) = wrapToPi(e_tilde_k(angle_idx));
123 end
124

125 %Innovation covariance
126 S_k = H_tilde_k*P_minus*H_tilde_k’ + R_k;
127

128 %Kalman gain
129 K_tilde_k = P_minus*H_tilde_k’/S_k;
130

131 %State update
132 xhat_plus = xhat_minus + K_tilde_k*e_tilde_k;
133

134 %Covariance update
135 P_plus = (eye(numStates) - K_tilde_k*H_tilde_k)*P_minus;
136

137 %Store results
138 xhat_hist(:,k+1) = xhat_plus;
139 P_hist(:,:,k+1) = P_plus;
140 innov_cell{k+1} = e_tilde_k;
141 S_cell{k+1} = S_k;
142 end
143

144 end

Listing 7: Code for EKF_Orbit.m

File: Final_Project_Main.m

1 %% Part 1 Problem A, B
2 Final_Project_Part_1_ab
3 %% Part 1 Problem C
4 Final_Project_Part_1_c
5 % TODO: Simulation Comparison
6 %% PArt II Problem 4 a
7 Final_Project_Part_2_Problem_4_part_a
8 %% PArt II Problem 5 a
9 % STANDALONE

10 %Final_Project_Part_2_Problem_5_part_a
11 %% PArt II Problem 4/5 b,c
12 % STANDALONE
13

14 %RunTMT_rmh
15 %% PArt II Problem 6
16 Final_Project_Part_2_Problem_6

Listing 8: Code for Final_Project_Main.m

File: Final_Project_Part_1_ab.m

1 %clear; clc; close all;

46

2

3 %Load in constants
4 mu = 398600; %Gravitational Constant [km^3/s^2]
5 Re = 6378; %Earth radius [km]
6 omegaE = (2*pi) / 86400; %Earth rotational rate [rad/s]
7

8 %Nominal Orbital Parameters
9 r0 = Re + 300; %300 km orbit radius [km]

10 X0 = r0; %Initial X Position [km]
11 Y0 = 0; %Initial Y Position [km]
12 X0_dot = 0; %Initial X Velocity [km/s]
13 Y0_dot = r0 * sqrt(mu / r0^3); %Initial Y Velocity [km/s]
14

15 x_nom = [X0; X0_dot; Y0; Y0_dot]; %Nominal state (used as linearization point)
16

17 %Define Disturbances (process noise standard deviations)
18 sigma_w = [0; 0]; %[w_tilde_1; w_tilde_2]
19

20 %Nominal Input (No Forcing)
21 u_nom = [0; 0];
22

23 %Simulation Constants
24 delta_t = 10; %[seconds]
25 time = 0;
26 stationID = 1;
27

28 %Get CT and DT system matrices at linearization point
29 [A, B, C, D, Gamma, F, G, H, M] = getLinearizedMatrices(x_nom, time, delta_t, stationID, mu);

Listing 9: Code for Final_Project_Part_1_ab.m

File: Final_Project_Part_1_c.m

1 %% Simulation Config
2 % Dummy Variables % TODO: Remove
3 n = numel(x_nom);
4 p = 2; % TODO: Vary this.
5 Q = zeros(n);
6 R = zeros(p);
7 r = Re + 300;
8 T = 2*pi*sqrt(r^3/mu);
9 Dt = 10;

10 T = 1400*Dt;
11

12 params.mu = mu;
13 dX0 = 0.001*x_nom; % TODO: Good IC
14 dX0 = [0,0.075,0,-0.021];
15 %% DT Simulation
16 dt_LTI_outputs = DTSimulation(Q,R,dX0’,T,delta_t,params);
17 %% Plot
18 %% DT Simulated States and Nominal States vs. Time
19 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
20 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
21 sgtitle("DT Simulated States and Nominal States vs. Time")
22

23 %% Sanity Check on Visibility
24 figure; hold on;
25 plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x)
26 plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
27 plot(Re*sin(0:0.01:(2*pi)),Re*cos(0:0.01:(2*pi)))
28 ifoo = 251;
29 for stationID = 1:12
30 [X_1_tfoo, Y_1_tfoo, ~, ~, ~] = GetGroundStationState(stationID, dt_LTI_outputs.t(ifoo));
31 scatter(X_1_tfoo,Y_1_tfoo,’filled’,"HandleVisibility","off")
32 text(X_1_tfoo,Y_1_tfoo,num2str(stationID))
33 end
34 x_tfoo = dt_LTI_outputs.x(ifoo,:);

47

35 scatter(x_tfoo(1),x_tfoo(3))
36 sgtitle("DT Simulated States and Nominal States (Cartesian)")
37

38 %% DT Simulated State Perturbations vs. Time"
39 figure; hold on;
40 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.dx)
41 sgtitle("DT Simulated State Perturbations vs. Time")
42

43 %% DT Simulated Measurements vs. Time
44 figure; hold on;
45 plotStationMeasurements(dt_LTI_outputs)
46 sgtitle("DT Simulated Measurements vs. Time")
47

48

49 %% Define variables and ICs
50 r_0 = sqrt(6678^2);
51 mu = 398600; % Gravitational parameter for Earth in km^3/s^2
52 x_IC = [6678; 0; 0; r_0 * sqrt(mu/r_0^3)];
53 x_0_perturb = [0; 0.075; 0; -0.021];
54 x_0 = x_IC + x_0_perturb;
55 Dt = 10;
56 T = 1400*10; % 1400 steps, each 10s
57

58 %% Simulate states
59 outputs = NonlinearSimulation(x_0, T, Dt);
60

61 %% Plot states over time
62 t = 0:Dt:T;
63 data_tip_indices = [1, 136, 402, 726, 1098, 1401];
64

65 figure;
66 sgtitle(’States vs. Time, Nonlinear Dynamics simulation’);
67 subplot(4,1,1);
68 p = plot(t, outputs.x(:,1));
69 xlabel(’Time (s)’);
70 ylabel(’X (km)’);
71 ylim([-1e4, 1e4]);
72

73 % Create the Data Tips
74 p.DataTipTemplate.DataTipRows(2).Format = ’%.0f’;
75 for i = 1:length(data_tip_indices)
76 datatip(p, ’DataIndex’, data_tip_indices(i));
77 end
78

79 subplot(4,1,2);
80 p = plot(t, outputs.x(:,2));
81 xlabel(’Time (s)’);
82 ylabel(’X_{dot} (km/s)’);
83

84 % Create the Data Tips
85 p.DataTipTemplate.DataTipRows(2).Format = ’%.3f’;
86 for i = 1:length(data_tip_indices)
87 datatip(p, ’DataIndex’, data_tip_indices(i));
88 end
89

90 subplot(4,1,3);
91 p = plot(t, outputs.x(:,3));
92 xlabel(’Time (s)’);
93 ylabel(’Y (km)’);
94 ylim([-1e4, 1e4]);
95

96 % Create the Data Tips
97 p.DataTipTemplate.DataTipRows(2).Format = ’%.0f’;
98 for i = 1:length(data_tip_indices)
99 datatip(p, ’DataIndex’, data_tip_indices(i));

100 end
101

102 subplot(4,1,4);
103 p = plot(t, outputs.x(:,4));

48

104 xlabel(’Time (s)’);
105 ylabel(’Y_{dot} (km/s)’);
106

107 % Create the Data Tips
108 p.DataTipTemplate.DataTipRows(2).Format = ’%.3f’;
109 for i = 1:length(data_tip_indices)
110 datatip(p, ’DataIndex’, data_tip_indices(i));
111 end
112

113 %% Plot Nonlinear Measurements vs. Time
114 outputs.t = t;
115 figure; hold on;
116 plotStationMeasurements(outputs)
117 sgtitle("Nonlinear Simulated Measurements vs. Time")
118

119 %% Sanity Check on Visibility
120 figure; hold on;
121 plotSimulationStatesCartesian(outputs.t,outputs.x)
122 plot(Re*sin(0:0.01:(2*pi)),Re*cos(0:0.01:(2*pi)))
123 ifoo = 1106;
124 for stationID = 1:12
125 [X_1_tfoo, Y_1_tfoo, ~, ~, ~] = GetGroundStationState(stationID, outputs.t(ifoo));
126 scatter(X_1_tfoo,Y_1_tfoo,’filled’,"HandleVisibility","off")
127 text(X_1_tfoo,Y_1_tfoo,num2str(stationID))
128 end
129 x_tfoo = outputs.x(ifoo,:);
130 scatter(x_tfoo(1),x_tfoo(3))
131 text(x_tfoo(1),x_tfoo(3),[’t = ’ num2str(outputs.t(ifoo))])
132 sgtitle("DT Simulated States and Nominal States (Cartesian)")
133

134 %% Simulation Comparison
135

136 figure; hold on;
137 sgtitle("DT Linearized vs. Nonlinear Simulation States")
138 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
139 plotSimulationStates(t,outputs.x);
140 legend("DT Linearized","Nonlinear")
141 figure; hold on;
142 sgtitle("DT Linearized States error vs. Nonlinear Simulation States")
143 outputs.error = dt_LTI_outputs.x - outputs.x;
144 plotSimulationStates(outputs.t,outputs.error);

Listing 10: Code for Final_Project_Part_1_c.m

File: Final_Project_Part_2_Problem_4_part_a.m

1 %% TODO: A "typical" sim run.
2

3 mu_0 = getXNom(0);
4 N = 1400;
5 n = 4;
6 pos_variance = 1e-6;
7 vel_variance = 1e-5;
8 P_0 = diag([pos_variance, vel_variance, pos_variance, vel_variance]);
9 Q_KF = 1e-10*eye(2); % TODO: Use a proper guess

10 %Q = Q - 1e-12*ones(2) + 1e-12*eye(2);
11 params.mu = mu;
12 T = 1400*Dt;
13

14 load(’orbitdeterm_finalproj_KFdata.mat’)
15 % Euler Approximation for DT Process Noise Covariance
16 G = [0 0;
17 1 0;
18 0 0;
19 0 1];
20 % Q_DT = G * Qtrue * G’ * Dt;
21 % epsilon = 1e-12;

49

22 % %Rtrue = Rtrue/1e6
23 % % Apply jitter to process noise covariance
24 % Q_DT = Q_DT + epsilon * eye(n);
25 t_0 = 0;
26 S_w = chol(Qtrue, ’lower’);
27 S_v = chol(Rtrue, ’lower’);
28 dX0 = [0.0001,0.005,0.0001,-0.002];
29 x_0 = mu_0 + dX0;
30 outputs = NonlinearSimulationNoisy(x_0,t_0,1400*Dt,Dt,S_w,S_v);
31

32 ydata_simulated = convertOutput2Ydata(outputs);
33 %ydata_simulated = cell(1,N);
34 %Rtrue = Rtrue/1e6
35 %% Plot Nonlinear Measurements vs. Time
36 t = Dt:Dt:T;
37 outputs.t = t;
38 figure; hold on;
39 plotStationMeasurements(outputs)
40 sgtitle("Nonlinear Simulated Measurements vs. Time")
41

42 %% Run LKF
43 [P_plus, x_hat_plus, P_minus, x_hat_minus] = ←↩

DTLinearizedKF(P_0,mu_0,N,Dt,Q_KF,Rtrue,ydata_simulated,params,t_0);
44

45 [sigma_x_hat_plus, ~] = getSigmas(n, N, P_plus, P_minus);
46 e_x_hat_plus = x_hat_plus(2:end,:) - outputs.x(2:end,:);
47

48

49 %% Plot
50

51 figure; hold on;
52 plotSimulationStatesCartesian(outputs.t,outputs.x)
53 plotSimulationStatesCartesian(t(2:end),x_hat_plus(2:end,:));
54 t = 0:Dt:T;
55 figure; hold on;
56 sgtitle("DT Linearized Kalman Filter");
57 plotSimulationStates(t(2:end),outputs.x(2:end,:));
58 plotSimulationStates(t(2:end),x_hat_plus(2:end,:));
59 plotSimulationStates(t(2:end),x_hat_plus(2:end,:)+sigma_x_hat_plus);
60 plotSimulationStates(t(2:end),x_hat_plus(2:end,:)-sigma_x_hat_plus);
61 for subplot_i = 1:n
62 subplot(n,1,subplot_i); hold on;
63 legend("x","$+2\x$","$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
64 end
65

66 figure; hold on;
67 sgtitle("DT Linearized Kalman Filter Error");
68 plotSimulationStates(t(2:end),e_x_hat_plus);
69 plotSimulationStates(t(2:end),2*sigma_x_hat_plus);
70 plotSimulationStates(t(2:end),-2*sigma_x_hat_plus);
71 for subplot_i = 1:n
72 subplot(n,1,subplot_i); hold on;
73 legend("e","+2\sigma","-2\sigma","Location","eastoutside");
74 end
75

76 %% Helper Functions
77 % TODO: Move to common?
78

79 function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)
80 sigma_2_x_hat_plus = zeros(n,N);
81 sigma_2_x_hat_minus = zeros(n,N);
82 for k = 1:N
83 sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
84 sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
85 end
86 sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
87 sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;

50

88 end

Listing 11: Code for Final_Project_Part_2_Problem_4_part_a.m

File: Final_Project_Part_2_Problem_5_part_a.m

1 %Clear workspace
2 clear; clc; close all;
3

4 %Load in Matlab data file
5 load(’orbitdeterm_finalproj_KFdata.mat’);
6

7 %Define orbital constants
8 mu = 398600; %km^3/s^2 (Earth gravitational parameter)
9 R_e = 6378; %km (Earth radius)

10 omega_E = (2*pi)/86400; %rad/s (Earth rotational rate)
11

12 dT = 10; %Sampling interval (seconds)
13 K = 1400; %Number of time steps
14 tvec = 0:dT:K*dT; %Data simulation time vector (length K+1)
15

16 %Define nominal initial state
17 r0 = 6678; %300 km altitude orbit
18 x_nom0 = [r0; 0; 0; r0*sqrt(mu/r0^3)]; %[X_nom, X_dot_nom, Y_nom, Y_dot_nom]
19

20 %Define initial desired perturbation
21 desiredPerturbation = [0.0; 0.0; 0.0; 0.0]; %[delta_X, delta_X_dot, delta_Y, delta_Y_dot]
22 x_initial = x_nom0 + desiredPerturbation; %[X, X_dot, Y, Y_dot]
23

24 %Eulerized DT process-noise covariance
25 Gamma = [0 0;
26 1 0;
27 0 0;
28 0 1];
29

30 %Apply first-order noise
31 Q_DT = Gamma * Qtrue * Gamma’ * dT;
32

33 %Apply jitter to process noise to ensure positive-definite matrix
34 Q_DT = Q_DT + 1e-12 * eye(4);
35

36 %Find Cholesky factors for process / measurement noise
37 S_w = chol(Qtrue, ’lower’); %Process noise (4x4)
38 % S_w = chol(Qtrue, ’lower’); %Process noise (4x4)
39

40 S_v = chol(Rtrue, ’lower’); %Single-station measurement noise (3x3)
41

42 %Simulate noisy nonlinear "truth" and convert to y-data format
43 sim_outputs = NonlinearSimulationNoisy(x_initial,0,K*dT,dT,S_w,S_v);
44 sim_yData = convertOutput2Ydata(sim_outputs);
45

46 %Form yData cell array aligned with tvec (index 1 corresponds to t = 0)
47 yData = cell(1,K+1);
48 yData{1} = []; %No measurement at t = 0
49 yData(2:end) = sim_yData(:); %Measurements from t = dT to K*dT
50

51 %EKF initial conditions and noise guesses
52 x0_hat = x_nom0;
53 sigma_x0 = 10000; %Position STD in km
54 sigma_v0 = 10; %Velocity STD in km/s
55 P_0 = diag([sigma_x0^2, sigma_v0^2, sigma_x0^2, sigma_v0^2]);
56 Q_KF = 5*Qtrue; %Process-noise guess for EKF
57

58 %Run Extended Kalman Filter
59 [xhat_hist,P_hist,innov_cell,S_cell,visible_ids_cell,yhat_cell] = ...
60 EKF_Orbit(yData,tvec,x0_hat,P_0,Q_KF,Rtrue,mu,R_e,omega_E);
61

51

62 %Pre-compute true states and 1-sigma standard deviations
63 N = numel(tvec);
64 x_true = sim_outputs.x.’; %4xN
65 sigma_hist = zeros(4,N);
66 for k = 1:N
67 sigma_hist(:,k) = sqrt(diag(P_hist(:,:,k)));
68 end
69 state_labels = {’X (km)’,’X_dot (km/s)’,’Y (km)’,’Y_dot (km/s)’};
70

71 %% Plot 1: Ground truth vs EKF estimated state (with 2 bounds)
72 figure(’Color’,’w’);
73 tiles = tiledlayout(’flow’,’TileSpacing’,’compact’,’Padding’,’compact’);
74 title(tiles,’Ground Truth vs EKF Estimated State’);
75

76 %X position
77 nexttile; hold on;
78 plot(tvec,x_true(1,:),’k’,’LineWidth’,1.2);
79 plot(tvec,xhat_hist(1,:),’b’,’LineWidth’,1.2);
80 plot(tvec,xhat_hist(1,:) + 2*sigma_hist(1,:),’r--’,’LineWidth’,1);
81 plot(tvec,xhat_hist(1,:) - 2*sigma_hist(1,:),’r--’,’LineWidth’,1);
82 ylabel(state_labels{1});
83 legend(’True’,’Estimated’,’+2\sigma’,’-2\sigma’,’Location’,’best’);
84 grid on;
85

86 %X velocity
87 nexttile; hold on;
88 plot(tvec,x_true(2,:),’k’,’LineWidth’,1.2);
89 plot(tvec,xhat_hist(2,:),’b’,’LineWidth’,1.2);
90 plot(tvec,xhat_hist(2,:) + 2*sigma_hist(2,:),’r--’,’LineWidth’,1);
91 plot(tvec,xhat_hist(2,:) - 2*sigma_hist(2,:),’r--’,’LineWidth’,1);
92 ylabel(state_labels{2});
93 legend(’True’,’Estimated’,’+2\sigma’,’-2\sigma’,’Location’,’best’);
94 grid on;
95

96 %Y position
97 nexttile; hold on;
98 plot(tvec,x_true(3,:),’k’,’LineWidth’,1.2);
99 plot(tvec,xhat_hist(3,:),’b’,’LineWidth’,1.2);

100 plot(tvec,xhat_hist(3,:) + 2*sigma_hist(3,:),’r--’,’LineWidth’,1);
101 plot(tvec,xhat_hist(3,:) - 2*sigma_hist(3,:),’r--’,’LineWidth’,1);
102 ylabel(state_labels{3});
103 legend(’True’,’Estimated’,’+2\sigma’,’-2\sigma’,’Location’,’best’);
104 grid on;
105

106 %Y velocity
107 nexttile; hold on;
108 plot(tvec,x_true(4,:),’k’,’LineWidth’,1.2);
109 plot(tvec,xhat_hist(4,:),’b’,’LineWidth’,1.2);
110 plot(tvec,xhat_hist(4,:) + 2*sigma_hist(4,:),’r--’,’LineWidth’,1);
111 plot(tvec,xhat_hist(4,:) - 2*sigma_hist(4,:),’r--’,’LineWidth’,1);
112 ylabel(state_labels{4});
113 xlabel(’Time (s)’);
114 legend(’True’,’Estimated’,’+2\sigma’,’-2\sigma’,’Location’,’best’);
115 grid on;
116

117 %Set up for additional comparison plots (matching Part 4 style)
118 n = 4;
119 Dt_loc = tvec(2) - tvec(1);
120 T = tvec(end);
121

122 %Use times k = 1..K (skip k = 0 to match LKF style)
123 t_plot = tvec(2:end); %1xK
124 x_true_plot = sim_outputs.x(2:end,:); %Kx4
125 xhat_plot = xhat_hist(:,2:end)’; %Kx4
126

127 %Posterior 1-sigma from P_hist for k = 1..K
128 K_steps = numel(t_plot);
129 sigma_x_hat_ekf = zeros(K_steps,n);
130 for k = 1:K_steps

52

131 sigma_x_hat_ekf(k,:) = sqrt(diag(P_hist(:,:,k+1)))’;
132 end
133

134 %Estimation error (estimate - truth)
135 e_x_hat_ekf = xhat_plot - x_true_plot; %Kx4
136

137 %% Plot 2: EKF state estimation error with 2 bounds
138 figure(’Color’,’w’);
139 tiles4 = tiledlayout(4,1,’TileSpacing’,’compact’,’Padding’,’compact’);
140 title(tiles4,’EKF State Estimation Error with \pm 2\sigma Bounds’);
141

142 for i = 1:n
143 nexttile; hold on;
144 plot(t_plot,e_x_hat_ekf(:,i),’b’,’LineWidth’,1.2);
145 plot(t_plot, 2*sigma_x_hat_ekf(:,i),’r--’,’LineWidth’,1);
146 plot(t_plot,-2*sigma_x_hat_ekf(:,i),’r--’,’LineWidth’,1);
147 ylabel([’e_{x_’,num2str(i),’}’]);
148 if i == n
149 xlabel(’Time (s)’);
150 end
151

152 % previousID = [];
153 % for j = 1:numel(innov_cell)
154 % iterationValue = visible_ids_cell{j};
155 %
156 % if((isempty(previousID) && ~isempty(iterationValue)) || any(previousID ~= iterationValue))
157 % xline(t_plot(j));
158 % previousID = iterationValue;
159 % end
160 % end
161 %
162 % legend(’Error’,’+2\sigma’,’-2\sigma’, ’Location’,’best’);
163 % grid on;
164

165

166

167 end
168

169

170 %% Plot 3: Nonlinear simulated measurements vs time (EKF case)
171 figure(’Color’,’w’);
172 tiles2 = tiledlayout(3,1,’TileSpacing’,’compact’,’Padding’,’compact’);
173 title(tiles2,’Nonlinear Simulated Measurements vs Time (EKF)’);
174

175 t_meas = [];
176 rho_meas = [];
177 rhod_meas = [];
178 phi_meas = [];
179

180 for k = 1:numel(yData)
181 yk = yData{k};
182 if isempty(yk)
183 continue;
184 end
185 n_vis = size(yk,2);
186 t_meas = [t_meas, repmat(tvec(k),1,n_vis)];
187 rho_meas = [rho_meas, yk(1,:)];
188 rhod_meas = [rhod_meas, yk(2,:)];
189 phi_meas = [phi_meas, yk(3,:)];
190 end
191

192 %Plot H_matrix Y Output values
193 range_vec = [];
194 range_rate_vec = [];
195 angle_vec = [];
196 time_vec = [];
197

198 times = [0 t_plot];
199

53

200 for i = 1:numel(yhat_cell)
201 disp(i);
202

203 iterationValue = yhat_cell{i};
204

205 range = []; range_rate = []; angle = [];
206

207 %Pull Out Value
208 if(~isempty(iterationValue))
209 iterationValue = reshape(iterationValue, 3, []);
210

211 range = iterationValue(1, :);
212 range_rate = iterationValue(2, :);
213 angle = iterationValue(3, :);
214 end
215

216 range_vec = [range_vec range(:)’];
217 range_rate_vec = [range_rate_vec range_rate(:)’];
218 angle_vec = [angle_vec angle(:)’];
219 time_vec = [time_vec times(i) * ones(1, numel(range))];
220 end
221

222

223 nexttile; hold on;
224 scatter(t_meas,rho_meas,10,’filled’, ’MarkerFaceColor’, [0, 0, 1]);
225 scatter(time_vec, range_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);
226 ylabel(’\rho (km)’);
227 grid on;
228

229 nexttile; hold on;
230 scatter(t_meas,rhod_meas,10,’filled’, ’MarkerFaceColor’, [0, 0, 1]);
231 scatter(time_vec, range_rate_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);
232

233 ylabel(’\dot{\rho} (km/s)’);
234 grid on;
235

236 nexttile; hold on;
237 scatter(t_meas,phi_meas,10,’filled’, ’MarkerFaceColor’, [0, 0, 1]);
238 scatter(time_vec, angle_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);
239

240 ylabel(’\phi (rad)’);
241 xlabel(’Time (s)’);
242 grid on;
243

244 %% Plot 4: True vs EKF estimated trajectory in Cartesian coordinates
245 figure(’Color’,’w’);
246 hold on;
247 plotSimulationStatesCartesian(t_plot,x_true_plot);
248 plotSimulationStatesCartesian(t_plot,xhat_plot);
249 title(’EKF: True vs Estimated States (Cartesian)’);
250 grid on;

Listing 12: Code for Final_Project_Part_2_Problem_5_part_a.m

File: Final_Project_Part_2_Problem_6.m

1

2 load(’orbitdeterm_finalproj_KFdata.mat’)
3

4 %% Plot Nonlinear Measurements vs. Time
5 outputs = convertYdata2Output(ydata,Dt);
6 % sanitize NaNs
7 outputs.visible_stations{1} = [];
8 outputs.y{1} = [];
9 figure; hold on;

10

11 plotStationMeasurements(outputs)

54

12 sgtitle("Given Measurements vs. Time")
13

14 %% LKF
15 mu_0 = getXNom(0);
16 N = 1400;
17 pos_variance = 1e-6;
18 vel_variance = 1e-5;
19 P_0 = diag([pos_variance, vel_variance, pos_variance, vel_variance]);
20 Q_KF = 1e-8*eye(2); % TODO: Use a proper guess
21 % Euler Approximation for DT Process Noise Covariance
22 G = [0 0;
23 1 0;
24 0 0;
25 0 1];
26 t_0 = 0;
27 params.mu = mu;
28 [P_plus, x_hat_plus, P_minus, x_hat_minus] = DTLinearizedKF(P_0,mu_0,N,Dt,Q_KF,Rtrue,ydata,params,t_0);
29 x_hat_plus = x_hat_plus’;
30 [sigma_x_hat_plus, ~] = getSigmas(n, N, P_plus, P_minus);
31

32

33 %% Plot
34 t=0:Dt:N*Dt;
35 figure; hold on;
36 sgtitle("DT Linearized Kalman Filter");
37 plotSimulationStates(t(2:end),x_hat_plus(:,2:end)’);
38 plotSimulationStates(t(2:end),x_hat_plus(:,2:end)’+sigma_x_hat_plus);
39 plotSimulationStates(t(2:end),x_hat_plus(:,2:end)’-sigma_x_hat_plus);
40 for subplot_i = 1:n
41 subplot(n,1,subplot_i); hold on;
42 legend("x","$+2\x$","$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
43 end
44

45 t=0:Dt:N*Dt;
46 figure; hold on;
47 sgtitle("DT Linearized Kalman Filter");
48 plotSimulationStates(t(2:end),2*sigma_x_hat_plus);
49 plotSimulationStates(t(2:end),-2*sigma_x_hat_plus);
50 for subplot_i = 1:n
51 subplot(n,1,subplot_i); hold on;
52 legend("$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
53 end
54 subplot(4,1,1); xlabel("x")
55 subplot(4,1,2);xlabel("\dot{x}")
56 subplot(4,1,3);xlabel("y")
57 subplot(4,1,4);xlabel("\dot{y}")
58

59 %% EKF
60 r_0 = sqrt(6678^2);
61 mu = 398600; % Gravitational parameter for Earth in km^3/s^2
62 R_E = 6378; %Earth radius [km]
63 omega_E = 2*pi/86400; %Earth rotation rate [rad/s]
64 x_0 = [6678; 0; 0; r_0 * sqrt(mu/r_0^3)];
65 params = struct(’mu’, mu, ’R_E’, R_E, ’omega_E’, omega_E);
66

67 [x_hat_plus_ekf, P_plus_ekf, innov_ekf, S_ekf] = EKF_Orbit(ydata, t, mu_0, P_0, Q_KF, Rtrue, params.mu, ←↩
params.R_E, params.omega_E);

68 [sigma_x_hat_plus_ekf, ~] = getSigmas(n, N, P_plus_ekf, P_plus_ekf);
69 x_hat_plus_ekf = x_hat_plus_ekf’;
70 %% Plot
71 figure; hold on;
72 sgtitle("EKF State Estimate");
73 plotSimulationStates(t(2:end),x_hat_plus_ekf(2:end,:));
74 plotSimulationStates(t(2:end),x_hat_plus_ekf(2:end,:)+sigma_x_hat_plus_ekf);
75 plotSimulationStates(t(2:end),x_hat_plus_ekf(2:end,:)-sigma_x_hat_plus_ekf);
76 for subplot_i = 1:n
77 subplot(n,1,subplot_i); hold on;
78 legend("x","$+2\x$","$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
79 end

55

80

81 %% Plot
82 figure; hold on;
83 sgtitle("EKF State Estimate Certainties");
84 plotSimulationStates(t(2:end),2*sigma_x_hat_plus_ekf);
85 plotSimulationStates(t(2:end),-2*sigma_x_hat_plus_ekf);
86 for subplot_i = 1:n
87 subplot(n,1,subplot_i); hold on;
88 legend("$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
89 end
90 %% Helper Functions
91 % TODO: Move to common?
92

93 function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)
94 sigma_2_x_hat_plus = zeros(n,N);
95 sigma_2_x_hat_minus = zeros(n,N);
96 for k = 1:N
97 sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
98 sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
99 end

100 sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
101 sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;
102 end

Listing 13: Code for Final_Project_Part_2_Problem_6.m

File: GetAllStationMeasurements.m

1 function [y_k, visible_stations_k, y_k_stacked] = GetAllStationMeasurements(x, t)
2 % TODO: Check if this should be global
3 N_stations = 12;
4

5 y_k = [];
6 visible_stations_k = [];
7 y_k_stacked = [];
8 for i = 1:N_stations
9 [y_i, is_visible] = GetStationMeasurement(x, t, i);

10 if is_visible
11 % Add measurement vector y^i(t) to stacked measurement vector
12 y_k = [y_k; y_i];
13 stationID = i;
14 visible_stations_k = [visible_stations_k stationID];
15 identified_measurements = [y_i;stationID];
16 y_k_stacked = [y_k_stacked identified_measurements];
17 end
18 end
19 end

Listing 14: Code for GetAllStationMeasurements.m

File: GetGroundStationState.m

1 % i is the station index (1 to 12)
2 function [X_i, Y_i, X_dot_i, Y_dot_i, theta_i] = GetGroundStationState(i, t)
3 % TODO: Check if these should be global
4 R_E = 6378; % Earth radius in km
5 omega_E = 2*pi/86400; % Earth rotation speed in rad/s
6 theta_i0 = (i - 1) * pi/6; % Initial location angle of ground station i
7

8 X_i = R_E * cos(omega_E * t + theta_i0);
9 Y_i = R_E * sin(omega_E * t + theta_i0);

10 X_dot_i = -omega_E * R_E * sin(omega_E * t + theta_i0);
11 Y_dot_i = omega_E * R_E * cos(omega_E * t + theta_i0);
12 theta_i = atan2(Y_i,X_i);
13 end

Listing 15: Code for GetGroundStationState.m

56

File: GetStationMeasurement.m

1 function [y_i, is_visible] = GetStationMeasurement(x, t, i)
2 [X_i, Y_i, X_dot_i, Y_dot_i, theta_i] = GetGroundStationState(i, t);
3

4 X = x(1);
5 X_dot = x(2);
6 Y = x(3);
7 Y_dot = x(4);
8 phi_i = atan2((Y - Y_i),(X - X_i));
9

10 phi_min = -pi/2 + theta_i;
11 phi_max = pi/2 + theta_i;
12

13 % Check if the LOS angle is within the station’s "sky-side" view cone
14 is_visible = (phi_i >= phi_min) && (phi_i <= phi_max);
15 angle_diff_raw = phi_i - theta_i; % GEN_AI
16 true_angle_diff_rad = mod(angle_diff_raw + pi, 2*pi) - pi; % GEN_AI
17 angle_rad = abs(true_angle_diff_rad); % GEN_AI
18 is_visible = angle_rad < pi/2; % GEN_AI
19 rho_i = sqrt((X - X_i)^2 + (Y - Y_i)^2);
20 X_diff = X - X_i;
21 X_dot_diff = X_dot - X_dot_i;
22 Y_diff = Y - Y_i;
23 Y_dot_diff = Y_dot - Y_dot_i;
24 rho_dot_i = ((X_diff * X_dot_diff) + (Y_diff * Y_dot_diff))/rho_i;
25 y_i = [rho_i; rho_dot_i; phi_i];
26 end

Listing 16: Code for GetStationMeasurement.m

File: H_jacobian.m

1 function [y, H, visible_ids] = H_jacobian(x, t, visible_ids, R_E, omega_E)
2 %Compute measurements and Jacobian for all visible stations.
3 %Inputs:
4 % x - 4x1 spacecraft state [X; Xdot; Y; Ydot]
5 % t - current time [s]
6 % visible_ids- List of visible station IDs from actual time step measurements
7 % R_E - Earth radius [km]
8 % omega_E - Earth rotation rate [rad/s]
9 %

10 %Outputs:
11 % y - stacked measurement vector for visible stations (3*number_visible x 1)
12 % H - stacked measurement Jacobian (3*number_visible x 4)
13 % visible_ids - station IDs used (returned as a column vector)
14

15 %Pull Out Current State
16 x1 = x(1); x2 = x(2); x3 = x(3); x4 = x(4);
17

18 %Ensure visible_ids is a column vector
19 visible_ids = visible_ids(:);
20

21 %Get Number of Measurements
22 number_visible = numel(visible_ids);
23

24 %Compute Current Position of Each Ground Tracking Station
25 X_i = zeros(1,12);
26 X_dot_i = zeros(1,12);
27 Y_i = zeros(1,12);
28 Y_dot_i = zeros(1,12);
29

30 for i = 1:12
31 theta_i_0 = (i - 1)*pi/6;
32 X_i(i) = R_E*cos(omega_E*t + theta_i_0);
33 Y_i(i) = R_E*sin(omega_E*t + theta_i_0);
34 X_dot_i(i) = -omega_E*R_E*sin(omega_E*t + theta_i_0);

57

35 Y_dot_i(i) = omega_E*R_E*cos(omega_E*t + theta_i_0);
36 end
37

38 %Preallocate output arrays
39 H = zeros(3*number_visible,4);
40 y = zeros(3*number_visible,1);
41

42 %Loop through specified visible station IDs
43 for k = 1:number_visible
44 i = visible_ids(k);
45

46 %Solve for Estimated Position Using Non-Linear CT Functions
47 delta_X = x1 - X_i(i);
48 delta_X_dot = x2 - X_dot_i(i);
49 delta_Y = x3 - Y_i(i);
50 delta_Y_dot = x4 - Y_dot_i(i);
51

52 phi_i = atan2(x3 - Y_i(i), x1 - X_i(i));
53 rho_i = sqrt(delta_X^2 + delta_Y^2);
54 rho_dot_i = (delta_X*delta_X_dot + delta_Y*delta_Y_dot)/rho_i;
55

56 y_i = [rho_i; rho_dot_i; phi_i];
57

58 %Calculate DT H Matrix Linearized at Estimation Point
59 H_i = zeros(3,4);
60 a = delta_X*delta_X_dot + delta_Y*delta_Y_dot;
61

62 H_i(1,1) = delta_X/rho_i;
63 H_i(1,3) = delta_Y/rho_i;
64

65 H_i(2,1) = (delta_X_dot/rho_i) - (a*delta_X/rho_i^3);
66 H_i(2,3) = (delta_Y_dot/rho_i) - (a*delta_Y/rho_i^3);
67 H_i(2,2) = delta_X/rho_i;
68 H_i(2,4) = delta_Y/rho_i;
69

70 H_i(3,1) = -delta_Y/(rho_i^2);
71 H_i(3,3) = delta_X/(rho_i^2);
72

73 %Add to Output Matrix
74 idx_start = 3*(k - 1) + 1;
75 y(idx_start:idx_start+2) = y_i;
76 H(idx_start:idx_start+2,:) = H_i;
77 end
78

79 end

Listing 17: Code for H_jacobian.m

File: NonlinearSimulation.m

1 function outputs = NonlinearSimulation(x_0,T,Dt)
2 t = 0:Dt:T;
3 % 1. Simulate the states
4 options = odeset(’RelTol’, 1e-12, ’AbsTol’, 1e-12);
5 [~,x] = ode45(@NonlinearStateEquations, t, x_0, options);
6 outputs.x = x;
7

8 % 2. Calculate the Measurements at Each Time Step
9 N_steps = T/Dt+1;

10 y = cell(N_steps, 1); % Use a cell array for variable-length vectors
11 visible_stations = cell(N_steps,1);
12 y_stacked = cell(N_steps,1);
13 for k = 1:N_steps
14 current_t = t(k);
15 current_x = x(k, :)’;
16 [y_k,visible_stations{k},y_stacked{k}] = GetAllStationMeasurements(current_x, current_t);
17 y{k} = y_k’;
18 end

58

19 outputs.y = y;
20 outputs.visible_stations = visible_stations;
21 outputs.y_stacked = y_stacked;
22 end

Listing 18: Code for NonlinearSimulation.m

File: NonlinearSimulationNoisy.m

1 function outputs = NonlinearSimulationNoisy(x_0,t_0,T,Dt,S_w,S_v)
2 t = t_0:Dt:T;
3 % 1. Simulate the states
4 options = odeset(’RelTol’, 1e-12, ’AbsTol’, 1e-12);
5 [~,x] = ode45(@NonlinearStateEquations, t, x_0, options);
6 outputs.x = x;
7

8 [~, ~, ~, ~, Gamma_0, ~, ~, ~, ~] = getLinearizedMatrices(x_0, t_0, Dt, 0, 0);
9

10 if numel(t) == 2
11 outputs.x = x(end,:);
12 x = x(end,:);
13 end
14 M = size(S_w, 1);
15 q_k = randn(M, numel(t));
16 xi_k = S_w * q_k;
17 Omega_tilde_k = Gamma_0 * Dt;
18 w_k = Omega_tilde_k * xi_k;
19 x = x’ + w_k;
20 x = x’;
21 % 2. Calculate the Measurements at Each Time Step
22 N_steps = (T-t_0)/Dt;
23 y = cell(N_steps, 1); % Use a cell array for variable-length vectors
24 visible_stations = cell(N_steps,1);
25 y_stacked = cell(N_steps,1);
26

27 for k = 1:N_steps
28 current_t = t(k+1);
29 current_x = x(k+1, :)’;
30 [y_k,visible_stations{k},y_stacked{k}] = GetAllStationMeasurements(current_x, current_t);
31 p = size(y_k,1);
32 q_k = randn(p, 1);
33 N_visible_stations_k = numel(visible_stations{k});
34 S_v_diag = mat2cell(repmat(S_v,1,N_visible_stations_k),3,3*ones(1,N_visible_stations_k));
35 S_v_blk = blkdiag(S_v_diag{:});
36 v_k = S_v_blk * q_k; % Measurement noise
37 y_k = y_k + v_k;
38

39 y_stacked{k} = reshape(y_stacked{k},4,[]) + [reshape(v_k,3,[]);zeros(1,N_visible_stations_k)];
40 y{k} = y_k’;
41 end
42 outputs.y = y;
43 outputs.visible_stations = visible_stations;
44 outputs.y_stacked = y_stacked;
45 end

Listing 19: Code for NonlinearSimulationNoisy.m

File: NonlinearStateEquations.m

1 function dx = NonlinearStateEquations(~, x)
2 % TODO: Check if we want that globally
3 mu = 398600; % Standard gravitational parameter
4 r = sqrt(x(1)^2 + x(3)^2);
5 x1_dot = x(2);
6 x2_dot = -mu*x(1)/r^3;
7 x3_dot = x(4);

59

8 x4_dot = -mu*x(3)/r^3;
9 dx = [x1_dot; x2_dot; x3_dot; x4_dot];

10 end

Listing 20: Code for NonlinearStateEquations.m

File: Part1Question3LinearDTSimulation.m

1 %% Simulation Config
2 % Dummy Variables % TODO: Remove
3 n = numel(x_nom);
4 p = 2; % TODO: Vary this.
5 Q = zeros(n);
6 R = zeros(p);
7 r = Re + 300;
8 T = 2*pi*sqrt(r^3/mu);
9 Dt = 10;

10 T = 1400*Dt;
11

12 params.mu = mu;
13 dX0 = 0.001*x_nom; % TODO: Good IC
14 dX0 = [0,0.075,0,-0.021];
15 %% Simulation
16 dt_LTI_outputs = DTSimulation(Q,R,dX0’,T,delta_t,params);
17 %% Plot
18 %% DT Simulated States and Nominal States vs. Time
19 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
20 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
21 sgtitle("DT Simulated States and Nominal States vs. Time")
22

23 %% Sanity Check on Visibility
24 figure; hold on;
25 plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x)
26 plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
27 plot(Re*sin(0:0.01:(2*pi)),Re*cos(0:0.01:(2*pi)))
28 ifoo = 251;
29 for stationID = 1:12
30 [X_1_tfoo, Y_1_tfoo, ~, ~, ~] = GetGroundStationState(stationID, dt_LTI_outputs.t(ifoo));
31 scatter(X_1_tfoo,Y_1_tfoo,’filled’,"HandleVisibility","off")
32 text(X_1_tfoo,Y_1_tfoo,num2str(stationID))
33 end
34 x_tfoo = dt_LTI_outputs.x(ifoo,:);
35 scatter(x_tfoo(1),x_tfoo(3))
36 sgtitle("DT Simulated States and Nominal States (Cartesian)")
37

38 %% DT Simulated State Perturbations vs. Time"
39 figure; hold on;
40 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.dx)
41 sgtitle("DT Simulated State Perturbations vs. Time")
42

43 %% DT Simulated Measurements vs. Time
44 figure; hold on;
45 plotStationMeasurements(dt_LTI_outputs)
46 sgtitle("DT Simulated Measurements vs. Time")

Listing 21: Code for Part1Question3LinearDTSimulation.m

File: PlotChiSquareTests.m

1 function PlotChiSquareTests(FilterName, ANEES, ANIS, K, alpha, N, n, p)
2 % NEES Confidence Interval bounds
3 r1_x = chi2inv(alpha/2, N*n) / N;
4 r2_x = chi2inv(1 - alpha/2, N*n) / N;
5

6 % NIS Confidence Interval bounds
7 r1_y = chi2inv(alpha/2, N*p) / N;

60

8 r2_y = chi2inv(1 - alpha/2, N*p) / N;
9

10 % Expected value (theoretical mean) for a consistent filter
11 expected_nees = n;
12 expected_nis = p;
13

14 % Time vector for plotting
15 t_vec = 1:K;
16

17 figure();
18 subplot(1, 2, 1);
19 hold on; grid on;
20 scatter(t_vec, ANEES, ’b’, ’DisplayName’,’ANEES (Average NEES)’);
21 yline(r1_x, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Lower Bound’);
22 yline(r2_x, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Upper Bound’);
23 yline(expected_nees, ’k:’, ’LineWidth’, 1, ’DisplayName’, ’Expected Value (n_x)’);
24 xlabel(’Time Step (k)’);
25 ylabel(’ANEES Value’);
26 title([FilterName ’ ANEES Test for Filter Consistency’]);
27 legend(’show’, ’Location’, ’best’);
28 %ylim([0.8*r1_x, 1.2*r2_x]);
29

30 subplot(1, 2, 2);
31 hold on; grid on;
32 scatter(t_vec, ANIS, ’b’, ’DisplayName’, ’ANIS (Average NIS)’);
33 yline(r1_y, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Lower Bound’);
34 yline(r2_y, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Upper Bound’);
35 yline(expected_nis, ’k:’, ’LineWidth’, 1, ’DisplayName’, ’Expected Value (n_y)’);
36 xlabel(’Time Step (k)’);
37 ylabel(’ANIS Value’);
38 title([FilterName ’ ANIS Test for Measurement Consistency’]);
39 legend(’show’, ’Location’, ’best’);
40 %ylim([0.8*r1_y, 1.2*r2_y]);
41 end

Listing 22: Code for PlotChiSquareTests.m

File: RunTMT_rmh.m

1 clear; clc; %close all;
2 rng(100);
3 r_0 = sqrt(6678^2);
4 mu = 398600; % Gravitational parameter for Earth in km^3/s^2
5 R_E = 6378; %Earth radius [km]
6 omega_E = 2*pi/86400; %Earth rotation rate [rad/s]
7 x_0 = [6678; 0; 0; r_0 * sqrt(mu/r_0^3)];
8

9 addpath(’Extended Kalman Filter’);
10

11 load(’orbitdeterm_finalproj_KFdata.mat’);
12 Dt = 10; % Time-step size 10s
13 K = 1400; % 1400 steps
14 N = 1000; % Number of Monte Carlo runs
15 alpha = 0.05; % For 95% Confidence Interval
16 n = 4; % Number of state vars
17 p = 3; % Size of measurement vector
18 Q_KF = 1e-10*eye(2); % TODO: Use a proper guess
19 R_KF = Rtrue;
20 [ANEES_LKF, ANIS_LKF, ANEES_EKF, ANIS_EKF] = TruthModelTesting_rmh(...
21 N, x_0, Dt, K, Qtrue, Rtrue, Q_KF, R_KF, ...
22 @DTLinearizedKF, @EKF_Orbit, struct(’mu’, mu, ’R_E’, R_E, ’omega_E’, omega_E));
23

24 %%
25 PlotChiSquareTests(’LKF’, ANEES_LKF, ANIS_LKF, K, alpha, N, n, p);
26 PlotChiSquareTests(’EKF’, ANEES_EKF, ANIS_EKF, K, alpha, N, n, p);

Listing 23: Code for RunTMT_rmh.m

61

File: TruthModelTesting_rmh.m

1 function [ANEES_LKF, ANIS_LKF, ANEES_EKF, ANIS_EKF] = TruthModelTesting_rmh(N, x_nom, Dt, K, Q_true, R_true, ←↩
Q_KF_guess, R_KF_guess, LKF, EKF, params)

2 % Define variables
3 n = size(x_nom, 1);
4 p = 3; % Measurement vector dimension
5 KF_params.mu = params.mu;
6

7 % Arrays to store Ground Truth states and measurements
8 x_true = zeros(N, n, K+1);
9 y_true = cell(N, K+1);

10

11 % Arrays to store NEES and NIS results
12 NEES_LKF = zeros(N, K);
13 NIS_LKF = zeros(N, K);
14 NEES_EKF = zeros(N, K);
15 NIS_EKF = zeros(N, K);
16

17 % To calculate DT Process Noise Covariance from Q_true
18 [~, ~, ~, ~, Gamma_0, ~, ~, ~, ~] = getLinearizedMatrices(x_nom, 0, Dt, 0, params.mu);
19

20 disp([’Starting Monte Carlo simulation with N = ’, num2str(N), ’ runs...’]);
21 for i = 1:N
22 % Choose dx_hat_plus_0 and P_0
23 dx_hat_plus_0 = zeros(1,n);
24 x_hat_plus_0 = x_nom + dx_hat_plus_0’;
25

26

27 % TODO: Verify these are correct
28 pos_variance = 1e-6;
29 vel_variance = 1e-5;
30 ICs = diag([pos_variance, vel_variance, pos_variance, vel_variance]);
31

32 % Instantiate ground truth state x(0) randomly
33 dx_true_0 = mvnrnd(dx_hat_plus_0’, ICs)’;
34 x_true(i,:,1) = x_nom + dx_true_0;
35

36 % Get S_w, S_v from Cholesky decomposition
37 S_w = chol(Q_true, ’lower’);
38 S_v = chol(R_true, ’lower’);
39

40 % Loop over K time steps to simulate ground truth
41 % for k = 1:K
42 % % Generate Ground Truth (Full Nonlinear Dynamics)
43 %
44 % % ------------- New process noise generation -----------------
45 % M = size(Q_true, 1);
46 % q_k = randn(M, 1);
47 % xi_k = S_w * q_k;
48 % Omega_tilde_k = Gamma_0 * Dt;
49 % w_k = Omega_tilde_k * xi_k;
50 % % --
51 %
52 % % Use Full Nonlinear Dynamics to propagate state
53 % x_true_k = x_true(i,:,k);
54 % nonlinearOutputs = NonlinearSimulation(x_true_k, Dt, Dt);
55 % x_prop_k_plus_1 = nonlinearOutputs.x(end,:)’;
56 % x_true(i,:,k+1) = x_prop_k_plus_1 + w_k;
57 %
58 % % Use noisy state to get measurements
59 % [y_k_plus_1, visible_stations_k_plus_1, y_k_plus_1_stacked] = ←↩

GetAllStationMeasurements(x_true(i,:,k+1), (k+1)*Dt);
60 %
61 % % Add measurement noise to measurements
62 % p_k_plus_1 = size(y_k_plus_1, 1);
63 % q_k_plus_1 = randn(p_k_plus_1, 1);
64 % N_visible_stations_k_plus_1 = numel(visible_stations_k_plus_1);

62

65 % S_v_diag = mat2cell(repmat(S_v, 1, N_visible_stations_k_plus_1), p, p*ones(1, ←↩
N_visible_stations_k_plus_1));

66 % S_v_blk = blkdiag(S_v_diag{:});
67 % v_k_plus_1 = S_v_blk * q_k_plus_1; % Measurement noise
68 % y_k_plus_1_stacked = reshape(y_k_plus_1_stacked, 4, []) + [reshape(v_k_plus_1, p, []); zeros(1, ←↩

N_visible_stations_k_plus_1)];
69 % y_true{i,k+1} = y_k_plus_1_stacked; % NOTE: measurements should be 4 x n
70 % end
71 t_0 = 0;
72

73 % ------------- Alternative nonlinear simulation -----------------
74 t_f = 1400*Dt;
75 outputs_i = NonlinearSimulationNoisy(x_true(i,:,1),t_0,t_f,Dt,S_w,S_v);
76 ydata_simulated_i = convertOutput2Ydata(outputs_i);
77 ydata_simulated_i = [{NaN(4,1)};ydata_simulated_i];
78 [y_true{i,:}] = deal(ydata_simulated_i{:});
79 x_i = outputs_i.x(2:end,:);
80 x_true(i,:,2:end) =x_i’;
81 % --
82

83 %% Run Filters (LKF and EKF)
84

85 %Super bad implementation for now <---- CHANGE AT SOME POINT
86 tvec_ekf = 0:Dt:K*Dt;
87 %pos_variance = 100;
88 %vel_variance = 0.1;
89 %ICs = diag([pos_variance^2, vel_variance^2, pos_variance^2, vel_variance^2]);
90

91 % "for each test trajectory sample in the NEES and NIS tests, you should initialize the
92 % filter with exactly the same initial perturbation state estimate [...]
93 % and covariance"
94 % Linearized Kalman Filter (LKF)
95 [P_plus_lkf, x_hat_plus_lkf, ~, ~, innov_lkf, S_lkf] = LKF(ICs, x_hat_plus_0’, K, Dt, Q_KF_guess, ←↩

R_KF_guess, y_true(i,2:end), KF_params, t_0);
96

97 % Extended Kalman Filter (EKF)
98 [x_hat_plus_ekf, P_plus_ekf, innov_ekf, S_ekf] = EKF(y_true(i,:), tvec_ekf, x_hat_plus_0’, ICs, ←↩

Q_KF_guess, R_KF_guess, params.mu, params.R_E, params.omega_E);
99

100 %% Calculate NEES/NIS for this run
101

102 % Loop over K time steps to calculate NEES/NIS
103 for k = 1:K
104 % LKF NEES/NIS (uses perturbation)
105 error_lkf = (x_true(i,:,k) - x_hat_plus_lkf(k,:))’;
106 NEES_LKF(i, k) = error_lkf’ * (P_plus_lkf(:,:,k) \ error_lkf);
107 if ~isempty(innov_lkf{k})
108 NIS_LKF(i, k) = innov_lkf{k}’ * (S_lkf{k} \ innov_lkf{k});
109 else
110 % No measurement available, exclude from mean
111 NIS_LKF(i, k) = NaN;
112 end
113

114 % EKF NEES/NIS (uses total state)
115 error_ekf = x_true(i,:,k)’ - x_hat_plus_ekf(:,k);
116 NEES_EKF(i, k) = error_ekf’ * (P_plus_ekf(:,:,k) \ error_ekf);
117 if ~isempty(innov_ekf{k})
118 NIS_EKF(i, k) = innov_ekf{k}’ * (S_ekf{k} \ innov_ekf{k});
119 else
120 % No measurement available, exclude from mean
121 NIS_EKF(i, k) = NaN;
122 end
123 end
124

125 if mod(i, 10) == 0
126 disp([’Completed run ’, num2str(i), ’ of ’, num2str(N)]);
127 end
128 end
129 disp(’Monte Carlo simulation complete.’);

63

130 assignin("base",’y_montecarlo_end’,y_true(end,:))
131 assignin("base",’x_montecarlo_end’,reshape(x_true(end,:,:),4,[]))
132 assignin("base",’x_hat_plus_lkf_end’,x_hat_plus_lkf)
133 assignin("base",’x_hat_plus_lkf_end’,x_hat_plus_lkf)
134 assignin("base",’x_hat_plus_ekf_1’,x_hat_plus_ekf)
135 assignin("base",’P_plus_lkf_montecarlo_end’,P_plus_lkf)
136

137 %% Statistical Test (ANEES & ANIS)
138 % Calculate the average mean across all runs
139 ANEES_LKF = nanmean(NEES_LKF, 1);
140 ANIS_LKF = nanmean(NIS_LKF, 1);
141 ANEES_EKF = nanmean(NEES_EKF, 1);
142 ANIS_EKF = nanmean(NIS_EKF, 1);
143 end

Listing 24: Code for TruthModelTesting_rmh.m

File: compareDTLinearizedAndNonLinear.m

1 %% Simulation Comparison
2

3 figure; hold on;
4 sgtitle("DT Linearized vs. Nonlinear Simulation States")
5 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
6 plotSimulationStates(t,outputs.x);
7 figure; hold on;
8 sgtitle("DT Linearized States error vs. Nonlinear Simulation States")
9 dt_LTI_outputs.error = dt_LTI_outputs.x - outputs.x;

10 plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.error);

Listing 25: Code for compareDTLinearizedAndNonLinear.m

File: convertOutput2Ydata.m

1 function ydata_simulated = convertOutput2Ydata(outputs)
2 ydata_simulated = cell(size(outputs.y));
3 for i_y = 1:numel(outputs.y)
4 y_k = outputs.y{i_y};
5 visible_stations_k = outputs.visible_stations{i_y};
6 ydata_simulated_k = [reshape(y_k,3,[]); visible_stations_k];
7 ydata_simulated{i_y} = ydata_simulated_k;
8 end
9 end

Listing 26: Code for convertOutput2Ydata.m

File: convertYdata2Output.m

1 function outputs = convertYdata2Output(ydata,Dt)
2 t = Dt*(0:(numel(ydata)-1));
3 outputs.t = t;
4 outputs.y = cell(size(ydata));
5 outputs.visible_stations = cell(size(ydata));
6 for i_ydata = 1:numel(ydata)
7 ydata_k = ydata{i_ydata};
8 if ~isempty(ydata_k)
9 outputs.y{i_ydata} = reshape(ydata_k(1:3,:),1,[]);

10 end
11 end
12 for i_ydata = 1:numel(ydata)
13 visible_stations_k = ydata{i_ydata};
14 if ~isempty(visible_stations_k)
15 outputs.visible_stations{i_ydata} = reshape(visible_stations_k(end,:),1,[]);
16 end
17 end

64

18 end

Listing 27: Code for convertYdata2Output.m

File: getLinearizedMatrices.m

1 function [A_k, B_k, C_k, D_k, Gamma_k, F_k, G_k, H_k, M_k] = getLinearizedMatrices(x_nom, time, delta_t, ←↩
stationID, mu)

2

3 %Pull out linearization point variables
4 x1 = x_nom(1); %X Position [km]
5 x2 = x_nom(2); %X Velocity [km/s]
6 x3 = x_nom(3); %Y Position [km]
7 x4 = x_nom(4); %Y Velocity [km/s]
8

9 %Get Location and Velocity of Tracking Station
10 [X_i, Y_i, X_dot_i, Y_dot_i, ~] = GetGroundStationState(stationID, time);
11

12 %Define Commonly Used Variables
13 r = sqrt(x1^2 + x3^2); %Earth-centered radial distance [km]
14 r5 = r^5; %Earth-centered radial distance to the fifth power [km^5]
15

16 delta_X_i = x1 - X_i; %Relative spacecraft-station X position [km]
17 delta_X_dot_i = x2 - X_dot_i; %Relative spacecraft-station X velocity [km/s]
18 delta_Y_i = x3 - Y_i; %Relative spacecraft-station Y position [km]
19 delta_Y_dot_i = x4 - Y_dot_i; %Relative spacecraft-station Y velocity [km/s]
20

21 a = delta_X_i * delta_X_dot_i + delta_Y_i * delta_Y_dot_i; %Range rate numerator
22

23 rho_i = sqrt(delta_X_i^2 + delta_Y_i^2); %Spacecraft-Station Range [km]
24

25 %% Define Continuous Time Matrices
26 %Define CT Dynamics Jacobian A(x) at Linearization Point (inertial frame)
27 A_k = zeros(4, 4);
28 A_k(1, 2) = 1;
29 A_k(3, 4) = 1;
30 A_k(2, 1) = mu * (2*x1^2 - x3^2) / r5;
31 A_k(2, 3) = 3 * mu * x1 * x3 / r5;
32 A_k(4, 1) = 3 * mu * x1 * x3 / r5;
33 A_k(4, 3) = mu * (2*x3^2 - x1^2) / r5;
34

35 %Define CT Input Jacobian B(x) at Linearization Point
36 B_k = [0 0;
37 1 0;
38 0 0;
39 0 1];
40

41 %Define Measurement Jacobian C(x) at Linearization Point
42 C_k = zeros(3, 4);
43 C_k(1, 1) = delta_X_i / rho_i;
44 C_k(1, 3) = delta_Y_i / rho_i;
45 C_k(2, 1) = (delta_X_dot_i / rho_i) - ((a * delta_X_i) / rho_i^3);
46 C_k(2, 2) = delta_X_i / rho_i;
47 C_k(2, 3) = (delta_Y_dot_i / rho_i) - ((a * delta_Y_i) / rho_i^3);
48 C_k(2, 4) = delta_Y_i / rho_i;
49 C_k(3, 1) = -1 * delta_Y_i / rho_i^2;
50 C_k(3, 3) = delta_X_i / rho_i^2;
51

52 %Define Force Influence on Measurement Jacobian D(x) at Linearization Point
53 D_k = zeros(3, 2);
54

55 %Define CT Disturbance Jacobian Gamma(x) at Linearization Point
56 Gamma_k = [0 0;
57 1 0;
58 0 0;
59 0 1];
60

61 %% Determine Discrete Time Matrices With Eulerization

65

62 %Determine Eulerized DT F and G matrices
63 F_k = eye(size(A_k)) + delta_t * A_k;
64 G_k = delta_t * B_k;
65

66 %Copy C and D matrices to H and M
67 H_k = C_k; %CT -> DT is identical for H matrix
68 M_k = D_k; %CT -> DT is identical for M matrix
69

70

71 end

Listing 28: Code for getLinearizedMatrices.m

File: getSigmas.m

1 function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)
2 sigma_2_x_hat_plus = zeros(n,N);
3 sigma_2_x_hat_minus = zeros(n,N);
4 for k = 1:N
5 sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
6 sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
7 end
8 sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
9 sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;

10 end

Listing 29: Code for getSigmas.m

File: getXNom.m

1 function x = getXNom(t)
2 mu = 398600; %Gravitational Constant [km^3/s^2]
3 Re = 6378; %Earth radius [km]
4 omegaE = (2*pi) / 86400; %Earth rotational rate [rad/s]
5 r = Re + 300;
6 theta_dot = sqrt(mu/(r^3));
7 theta_0 = 0; % TODO: allow non-zero
8 theta = theta_dot.*t + theta_0;
9 x(:,1) = r*cos(theta);

10 x(:,2) = -r*theta_dot.*sin(theta);
11 x(:,3) = r*sin(theta);
12 x(:,4) = r*theta_dot.*cos(theta);
13 end

Listing 30: Code for getXNom.m

File: orbit_dynamics.m

1 function dx = orbit_dynamics(~, x, u, mu)
2 %Calculates continuous-time spacecraft dynamics derivatives.
3 %Inputs:
4 % ~ - Placeholder for used time variable, kept for ODE45
5 % x - 4x1 state vector [X; Xdot; Y; Ydot] in km and km/s
6 % u - 2x1 control input [u1; u2] (accelerations in km/s^2)
7 % mu - gravitational parameter [km^3/s^2]
8 %
9 %Output:

10 % dx - 4x1 time derivative of the state
11

12 %Pull Out States
13 x1 = x(1); x2 = x(2);
14 x3 = x(3); x4 = x(4);
15

16 %Calculate Derivatives
17 x2_dot = -mu * x1 / (sqrt(x1^2 + x3^2))^3 + u(1);

66

18 x4_dot = -mu * x3 / (sqrt(x1^2 + x3^2))^3 + u(2);
19

20 %Assemble Output Derivative
21 dx = [x2; x2_dot; x4; x4_dot];
22

23 end

Listing 31: Code for orbit_dynamics.m

File: plotLastTrial.m

1 %% Plot Last trial
2

3 e_x_montecarlo_end = x_montecarlo_end - x_hat_plus_lkf_end’;
4 e_x_montecarlo_end = e_x_montecarlo_end’;
5 [sigma_plus_lkf_montecarlo_end, ~] = getSigmas(n, K, P_plus_lkf_montecarlo_end, P_plus_lkf_montecarlo_end);
6

7 t = Dt*0:K;
8 figure; hold on;
9 sgtitle("DT Linearized Kalman Filter");

10 plotSimulationStates(t(2:end),e_x_montecarlo_end(2:end,:));
11 plotSimulationStates(t(2:end),2*sigma_plus_lkf_montecarlo_end);
12 plotSimulationStates(t(2:end),-2*sigma_plus_lkf_montecarlo_end);
13 for subplot_i = 1:n
14 subplot(n,1,subplot_i); hold on;
15 legend("x","$+2\x$","$+2\sigma$","-2σ","Location","eastoutside","Interpreter",’latex’);
16 end

Listing 32: Code for plotLastTrial.m

File: plotSimulationStates.m

1 function plotSimulationStates(t,x)
2 %% Plot
3 subplot_ylabels = {’$$x [km]$$’;...
4 ’$$\dot{x} [km/s]$$’;...
5 ’$$y [km]$$’
6 ’$$\dot{y} [km/s]$$’;};
7 [~, n] = size(x);
8 for subplot_i = 1:n
9 subplot(n,1,subplot_i); hold on;

10 plot(t,x(:,subplot_i));
11 % i_x_A = x_A_indices(subplot_i);
12 % scatter(t_window,x_A(i_x_A,k_window+1));
13 ylabel(subplot_ylabels(subplot_i),"Interpreter","latex")
14 xlabel(’t [s]’)
15 end
16 end

Listing 33: Code for plotSimulationStates.m

File: plotSimulationStatesCartesian.m

1 function plotSimulationStatesCartesian(t,x)
2 %% Plot
3

4 [~, n]= size(x);
5 plot(x(:,1),x(:,3));
6 axis equal;
7 grid on;
8 % i_x_A = x_A_indices(subplot_i);
9 % scatter(t_window,x_A(i_x_A,k_window+1));

10

11 end

Listing 34: Code for plotSimulationStatesCartesian.m

67

File: plotStationMeasurements.m

1 function plotStationMeasurements(outputs) % GENAI
2 % PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot ←↩

showing station visibility over time, using matching colors. % GENAI
3 % % GENAI
4 % Inputs: % GENAI
5 % outputs.t : 1xM vector of time instances (s). % GENAI
6 % outputs.visible_stations : Mx1 cell array; cell k contains a vector of station IDs (double) visible ←↩

at time outputs.t(k). % GENAI
7 % outputs.y : Mx1 cell array; cell k contains a vector of measurements [rho1, rdot1, phi1, rho2, rdot2, ←↩

phi2, ...] corresponding to the station IDs in outputs.visible_stations{k}. % GENAI
8 ptSize=20; % GENAI
9 stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI

10 visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
11 for k=1:length(outputs.t) % GENAI
12 ids=outputs.visible_stations{k}; % GENAI
13 measurements=outputs.y{k}; % GENAI
14 if isempty(ids) % GENAI
15 continue; % GENAI
16 end % GENAI
17 for i=1:length(ids) % GENAI
18 current_id=ids(i); % GENAI
19 vals=measurements((i-1)*3+1:(i-1)*3+3); % GENAI
20 new_row=[outputs.t(k),vals]; % GENAI
21 if isKey(stationMap,current_id) % GENAI
22 stationMap(current_id)=[stationMap(current_id);new_row]; % GENAI
23 else % GENAI
24 stationMap(current_id)=new_row; % GENAI
25 end % GENAI
26 if isKey(visibilityMap,current_id) % GENAI
27 visibilityMap(current_id)=[visibilityMap(current_id);outputs.t(k),current_id]; % GENAI
28 else % GENAI
29 visibilityMap(current_id)=[outputs.t(k),current_id]; % GENAI
30 end % GENAI
31 end % GENAI
32 end % GENAI
33 all_ids=sort(cell2mat(keys(stationMap))); % GENAI
34 if isempty(all_ids) % GENAI
35 warning(’No station data found to plot.’); % GENAI
36 return; % GENAI
37 end % GENAI
38 colors=lines(length(all_ids)); % GENAI
39 ax1=subplot(4,1,1);hold on;grid on;box on; % GENAI
40 ylabel(’ρ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
41 ax2=subplot(4,1,2);hold on;grid on;box on; % GENAI
42 ylabel(’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
43 ax3=subplot(4,1,3);hold on;grid on;box on; % GENAI
44 ylabel(’ϕ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
45 ax4=subplot(4,1,4);hold on;grid on;box on; % GENAI
46 ylabel(’Station ID’); % GENAI
47 xlabel(’Time (t)’); % GENAI
48 for i=1:length(all_ids) % GENAI
49 id=all_ids(i); % GENAI
50 data=stationMap(id); % GENAI
51 vis_data=visibilityMap(id); % GENAI
52 col=colors(i,:); % GENAI
53 legName=sprintf(’Station %d’,id); % GENAI
54 scatter(ax1,data(:,1),data(:,2),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
55 scatter(ax2,data(:,1),data(:,3),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
56 scatter(ax3,data(:,1),data(:,4),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
57 scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,col,’filled’); % GENAI
58 end % GENAI
59 yticks(all_ids); % GENAI
60 ylim([min(all_ids)-0.5,max(all_ids)+0.5]); % GENAI
61 % TODO: This line is really slow and we don’t really use it.
62 % TODO: Uncomment if needed.
63 % linkaxes([ax1,ax2,ax3,ax4],’x’); % GENAI

68

64 end % GENAI

Listing 35: Code for plotStationMeasurements.m

File: plotStationMeasurements2.m

1 function plotStationMeasurements(outputs) % GENAI
2 % PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot ←↩

showing station visibility over time, using matching colors. % GENAI
3 % % GENAI
4 % Inputs: % GENAI
5 % outputs.t : 1xM vector of time instances (s). % GENAI
6 % outputs.visible_stations : Mx1 cell array; cell k contains a vector of station IDs (double) visible ←↩

at time outputs.t(k). % GENAI
7 % outputs.y : Mx1 cell array; cell k contains a vector of measurements [rho1, rdot1, phi1, rho2, rdot2, ←↩

phi2, ...] corresponding to the station IDs in outputs.visible_stations{k}. % GENAI
8 ptSize=20; % GENAI
9 stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI

10 visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
11 for k=1:length(outputs.t) % GENAI
12 ids=outputs.visible_stations{k}; % GENAI
13 measurements=outputs.y{k}; % GENAI
14 if isempty(ids) % GENAI
15 continue; % GENAI
16 end % GENAI
17 for i=1:length(ids) % GENAI
18 current_id=ids(i); % GENAI
19 vals=measurements((i-1)*3+1:(i-1)*3+3); % GENAI
20 new_row=[outputs.t(k),vals]; % GENAI
21 if isKey(stationMap,current_id) % GENAI
22 stationMap(current_id)=[stationMap(current_id);new_row]; % GENAI
23 else % GENAI
24 stationMap(current_id)=new_row; % GENAI
25 end % GENAI
26 if isKey(visibilityMap,current_id) % GENAI
27 visibilityMap(current_id)=[visibilityMap(current_id);outputs.t(k),current_id]; % GENAI
28 else % GENAI
29 visibilityMap(current_id)=[outputs.t(k),current_id]; % GENAI
30 end % GENAI
31 end % GENAI
32 end % GENAI
33 all_ids=sort(cell2mat(keys(stationMap))); % GENAI
34 if isempty(all_ids) % GENAI
35 warning(’No station data found to plot.’); % GENAI
36 return; % GENAI
37 end % GENAI
38 colors=lines(length(all_ids)); % GENAI
39 ax1=subplot(4,1,1);hold on;grid on;box on; % GENAI
40 ylabel(’ρ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
41 ax2=subplot(4,1,2);hold on;grid on;box on; % GENAI
42 ylabel(’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
43 ax3=subplot(4,1,3);hold on;grid on;box on; % GENAI
44 ylabel(’ϕ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
45 ax4=subplot(4,1,4);hold on;grid on;box on; % GENAI
46 ylabel(’Station ID’); % GENAI
47 xlabel(’Time (t)’); % GENAI
48 for i=1:length(all_ids) % GENAI
49 id=all_ids(i); % GENAI
50 data=stationMap(id); % GENAI
51 vis_data=visibilityMap(id); % GENAI
52 col=colors(i,:); % GENAI
53 legName=sprintf(’Station %d’,id); % GENAI
54 scatter(ax1,data(:,1),data(:,2),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
55 scatter(ax2,data(:,1),data(:,3),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
56 scatter(ax3,data(:,1),data(:,4),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
57 scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,col,’filled’); % GENAI
58 end % GENAI
59 yticks(all_ids); % GENAI

69

60 ylim([min(all_ids)-0.5,max(all_ids)+0.5]); % GENAI
61 % TODO: link axes is really slow. Consider uncommenting.
62 % linkaxes([ax1,ax2,ax3,ax4],’x’); % GENAI
63

64 % --- X-Position Alignment --- % GENAI
65 p1=get(ax1,’Position’); % GENAI
66 p2=get(ax2,’Position’); % GENAI
67 p3=get(ax3,’Position’); % GENAI
68 p4=get(ax4,’Position’); % GENAI
69 left_x=max([p1(1),p2(1),p3(1),p4(1)]); % Find the rightmost left edge % GENAI
70 width_x=min([p1(3),p2(3),p3(3),p4(3)]); % Find the narrowest width % GENAI
71 set(ax1,’Position’,[left_x,p1(2),width_x,p1(4)]); % GENAI
72 set(ax2,’Position’,[left_x,p2(2),width_x,p2(4)]); % GENAI
73 set(ax3,’Position’,[left_x,p3(2),width_x,p3(4)]); % GENAI
74 set(ax4,’Position’,[left_x,p4(2),width_x,p4(4)]); % GENAI
75 end % GENAI

Listing 36: Code for plotStationMeasurements2.m

File: plotStationMeasurementsNoColor.m

1 function plotStationMeasurementsNoColor(outputs)
2 % PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot ←↩

showing station visibility over time, using matching colors. % GENAI
3 % % GENAI
4 % Inputs: % GENAI
5 % outputs.t : 1xM vector of time instances (s). % GENAI
6 % outputs.visible_stations : Mx1 cell array; cell k contains a vector of station IDs (double) visible ←↩

at time outputs.t(k). % GENAI
7 % outputs.y : Mx1 cell array; cell k contains a vector of measurements [rho1, rdot1, phi1, rho2, rdot2, ←↩

phi2, ...] corresponding to the station IDs in outputs.visible_stations{k}. % GENAI
8 ptSize=20; % GENAI
9 stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI

10 visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
11 for k=1:length(outputs.t) % GENAI
12 ids=outputs.visible_stations{k}; % GENAI
13 measurements=outputs.y{k}; % GENAI
14 if isempty(ids) % GENAI
15 continue; % GENAI
16 end % GENAI
17 for i=1:length(ids) % GENAI
18 current_id=ids(i); % GENAI
19 vals=measurements((i-1)*3+1:(i-1)*3+3); % GENAI
20 new_row=[outputs.t(k),vals]; % GENAI
21 if isKey(stationMap,current_id) % GENAI
22 stationMap(current_id)=[stationMap(current_id);new_row]; % GENAI
23 else % GENAI
24 stationMap(current_id)=new_row; % GENAI
25 end % GENAI
26 if isKey(visibilityMap,current_id) % GENAI
27 visibilityMap(current_id)=[visibilityMap(current_id);outputs.t(k),current_id]; % GENAI
28 else % GENAI
29 visibilityMap(current_id)=[outputs.t(k),current_id]; % GENAI
30 end % GENAI
31 end % GENAI
32 end % GENAI
33 all_ids=sort(cell2mat(keys(stationMap))); % GENAI
34 if isempty(all_ids) % GENAI
35 warning(’No station data found to plot.’); % GENAI
36 return; % GENAI
37 end % GENAI
38 ax1=subplot(4,1,1);hold on;grid on;box on; % GENAI
39 ylabel(’ρ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
40 ax2=subplot(4,1,2);hold on;grid on;box on; % GENAI
41 ylabel(’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
42 ax3=subplot(4,1,3);hold on;grid on;box on; % GENAI
43 ylabel(’ϕ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
44 ax4=subplot(4,1,4);hold on;grid on;box on; % GENAI

70

45 ylabel(’Station ID’); % GENAI
46 xlabel(’Time (t)’); % GENAI
47 for i=1:length(all_ids) % GENAI
48 id=all_ids(i); % GENAI
49 data=stationMap(id); % GENAI
50 vis_data=visibilityMap(id); % GENAI
51 legName=sprintf(’Station %d’,id); % GENAI
52 scatter(ax1,data(:,1),data(:,2),ptSize,’filled’,’.’,’DisplayName’,legName); % GENAI
53 scatter(ax2,data(:,1),data(:,3),ptSize,’filled’,’.’,’DisplayName’,legName); % GENAI
54 scatter(ax3,data(:,1),data(:,4),ptSize,’filled’,’.’,’DisplayName’,legName); % GENAI
55 scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,’filled’,’.’); % GENAI
56 end % GENAI
57 yticks(all_ids); % GENAI
58 ylim([min(all_ids)-0.5,max(all_ids)+0.5]); % GENAI
59 legend(ax1,’show’,’Location’,’eastoutside’); % GENAI
60 linkaxes([ax1,ax2,ax3,ax4],’x’); % GENAI
61 end % GENAI

Listing 37: Code for plotStationMeasurementsNoColor.m

File: propagate_orbit.m

1 function x_next = propagate_orbit(x_curr, u_curr, dt, mu)
2 %Propagates the nonlinear dynamics one time step at a time (dt)
3 %Inputs:
4 % x_curr - 4x1 current state at t_k
5 % u_curr - 2x1 control input assumed ZOH (constant over [t_k, t_k+1])
6 % dt - time step [seconds]
7 % mu - gravitational parameter [km^3/s^2]
8 %
9 %Output:

10 % x_next - 4x1 state at t_k+1 after integrating dynamics
11

12 % Anonymous handle for ODE45 (U_curr and Mu are held constant)
13 dynfun = @(t, x) orbit_dynamics(t, x, u_curr, mu);
14

15 % Integrate from t=0 to t=dt
16 tspan = [0, dt];
17 opts = odeset(’RelTol’,1e-9,’AbsTol’,1e-9);
18 [~, x_traj] = ode45(dynfun, tspan, x_curr, opts);
19

20 % Take final state
21 x_next = x_traj(end, :)’;
22 end

Listing 38: Code for propagate_orbit.m

71

	Team member contributions
	Ryan
	Philippe
	Jack

	Part I - Deterministic System Analysis
	Continuous-Time Dynamics
	Discrete-Time Linearization
	Dynamics Simulation
	Station Visibility
	Linearized DT simulation
	Full nonlinear simulation
	Results and Plots
	DT Linearized Simulation
	Nonlinear Simulation
	Nonlinear Simulated Measurements vs. Time
	Comparison

	Part II - Stochastic Nonlinear Filtering
	Stochastic Nonlinear Filter Validation via Monte Carlo Analysis
	Ground Truth Simulation
	Filter Consistency Testing
	Filter Tuning Methodology

	Linearized Kalman Filter (LKF)
	Initialization
	Time update/prediction step
	Index Convention
	Measurement update/correction step
	Output
	Results

	Extended Kalman Filter (EKF)
	Initialization and EKF setup
	Time update (prediction)
	Measurement update
	Results

	State trajectory estimation and comparison

	Estimation Haiku - Advanced Question 13
	Appendix
	Appendix A: Equation Derivation
	Appendix B: MATLAB Code

