Final Project - Statistical orbit determination

ASEN 5044 - Statistical Estimation for Dynamical Systems (Fall 2025)
Prof. Khosro Ghobadi-Far

Jack Huston
Ryan Hyatt
Philippe Kruettli

December 12, 2025



Contents

1 Team member contributions

1.1 Ryan . . . . 0. 0 e e
1.2 Philippe . . . . . e
1.3 Jack . . oL
2 Part I - Deterministic System Analysis
2.1 Continuous-Time Dynamics . . . . . . . . . . ...
2.2 Discrete-Time Linearization . . . . . . . .. ... ... o oL
2.3 Dynamics Simulation . . . . . . ... Lo
2.3.1 Station Visibility . . . . . . .. ..o
2.3.2 Linearized DT simulation . . . .. ... .. ... ... ... ...
2.3.3 Full nonlinear simulation . . . . . ... .. ... ... 0oL
2.34 Resultsand Plots . . . . . . .. .. ... oo
2.3.5 DT Linearized Simulation . . . . . . . . . .. . ... ... ... .. .....
2.3.6 Nonlinear Simulation . . . . . . . . . . . . .. .. .. ... e
2.3.7 Nonlinear Simulated Measurements vs. Time . . . . . ... ... ... ...
2.3.8 Comparison . . . . . . . ..o e e
3 Part IT - Stochastic Nonlinear Filtering
3.1 Stochastic Nonlinear Filter Validation via Monte Carlo Analysis . . . .. ... ..
3.1.1 Ground Truth Simulation . . . . . ... ... ... ... ... ... ...
3.1.2  Filter Consistency Testing . . . . . . . . ... . ... ..
3.1.3 Filter Tuning Methodology . . . . . . . .. ... .. ... .. ... ....
3.2 Linearized Kalman Filter (LKF) . . . .. .. ... . .. . ... ... .....
3.2.1 Imitialization . . . . . . . . . L
3.2.2  Time update/prediction step . . . . . . ...
3.2.3 Index Convention . . . . . . . . .. . ...
3.2.4 Measurement update/correction step . . . . . . ...
3.25 Output . . . . . .
326 Results . . . . ..
3.3 Extended Kalman Filter (EKF) . . . . . . . ... . .. .. ... ...
3.3.1 Imitialization and EKF setup . . . . .. .. ... .. ... ...
3.3.2 Time update (prediction) . . . . . ... ... ...
3.3.3 Measurement update . . . . . . ...
3.3.4 Results . . . . . e e
3.4 State trajectory estimation and comparison . . . . . ... ... Lo

4 Estimation Haiku - Advanced Question 13

5 Appendix
5.1 Appendix A: Equation Derivation . . . . . . . . . . ... ... .. ... ...
5.2 Appendix B: MATLAB Code . . . . . . . . . .. .

14
14
14
14
15
16
16
16
16
16
17
17
22
22
22
23
24
28

31



1.1

Team member contributions

Ryan

. Linearized DT dynamics and measurement simulation

. Part 3 linearized DT dynamics figure generation

. Document writeup for part 3 linearized simulation

. Implementation and tuning of linearized Kalman Filter (Part 4a)
. Part 6 - Linearized Kalman filter implementation

. Document writeup for part 4a, and part 6

Philippe

. Nonlinear ode45 dynamics and measurement simulation
. Part 3 non-linear dynamics figure generation

. Document writeup for part 3 non-linear simulation

Non-linear simulation running as monte-carlo for parts 4 and 5
Plots of the NEES test statistics for 4.b and 5.b

Plots of the NIS test statistics for 4.c and 5.c

Part 6 comparison

Document writeup for NEES and NIS statistics for 4.b/c and 5.b/c, and part 6 comparison.

Jack

. Part 1 Jacobian derivation for CT model

Part 2 Linearization and associated Matlab Script

. Document writeup for parts 1 and 2

Implementation and tuning of Extended Kalman Filter (Part 5a)
Part 6 - Filter implementation

Document writeup for part 5a, and part 6



2 Part I - Deterministic System Analysis

2.1 Continuous-Time Dynamics

The spacecraft motion is modeled in an Earth—centered inertial frame with state vector

| _ |

T2 t X(t

0= = lvel
z4(t) Y (t)

control input
and process disturbance

The current orbital radius is

r(t) = VX2(t) + Y2(t) = /a3 (1) + 23(1),

and the continuous—time nonlinear dynamics (including small control and disturbance accelera-
tions) are

I3 (t)

r3(t)

with the standard gravitational parameter = 398600 km?/s?.
These equations can be written as

(t) = f(z(t)) + Bu(t) +Tw(t),

where f € R* collects the gravitational acceleration terms, and the input and disturbance Jacobians
are

da(t) = V(1) = —n

+ ua(t) + wa(t),

c R4X2

OO = O
= o O O

Dynamics Jacobian A(x)

The continuous-time dynamics Jacobian A(x) = 9f/0x (dimensions 4 x 4) is obtained by
differentiating the components of f(x) with respect to the state variables 1, x2, 3, and z4. Using

r=+/x% + z% we find

%:[0 10 0,
%:[0 0 0 1],

=~



while the remaining partial derivatives are zero. Collecting these terms gives

0 1 0 0
22_2
T |
T) = r T A(x) € R**%,
0 0 0 1’
T1T3 222 — 23
T T

Measurement model and Jacobian H'(z,t)

Each ground station ¢ provides a 3—dimensional measurement

y'(t) = | ()| +0'(),
¢*(t)

where p is the range, p° the range rate, and ¢° the elevation angle from station i to the spacecraft.
Using the station position (XZ(t), YZ(t)) and velocity (X’(t), YZ(t)), we define relative position and
velocity components

AX; = X(t)— XL(t), AY; =Y(t)—Y/(t),

AXi = X(t) - Xi(t), AV, =Y (t) - Vi),

pi = \JAX?+AY?,  a; = AX;AX; + AY;AY;.

The nonlinear measurement functions are then

and

p' (t) = pi,
i @
P t) = D)
) Pi
AY;
¢'(t) = tan™" (AXZ>
Linearizing y*(t) = h'(z(t),t) with respect to the spacecraft state yields the measurement
Jacobian ohi
Hl(x,t) = %(‘f,t) S R3X47
with rows
o' [AX; AY;
p_ 0 0],
Ox L Pi Pi
opt  [piAX; — a;AX;/pi  AX;  piAY; —aAYi/p;  AY;
or | p; pi p; pi ]’
i [ AY; AX;
00" _[LA% A4 0} .
Oz L P Pi

Stacking H'(z,t) over all visible stations at time ¢ gives the full measurement Jacobian H(x,t)
used in the linearized output model.

A full handwritten derivation is available in the appendix below.



2.2 Discrete-Time Linearization
Continuous-time Linearized Model

We linearize the nonlinear dynamics about a time-varying nominal (noise-free) trajectory
Znom(t) driven by a nominal input wyem (t). The perturbation variables are defined as

0z(t) = 2(t) = Zpom(t),  Su(t) = u(t) = unom(t),  w(t) = w(t),
and for each station i,
3y (1) =Y (8) = Ynom(®),  Ynom(t) = B (Znom (1), 2).
We can therefore find that the continuous time linearized perturbation model is the following:
8i(t) = A(@pom (t)) 6z(t) + Bou(t) + L w(t),

where A(x), B, and T are the Jacobians derived in Part I(a). Importantly, as the nominal lin-
earization point is continuously changing and A is evaluated along the nominal trajectory, A is
time—varying:

Ak = A(l‘nom(tk)), tk = kAT.

We also find that the linearized measurement model () about ,,om (t) is equal to the following:
8y (t) = H' (Tpom (t), t) dx(t),

where H'(z,t) = Oh'/0x is the 3 x 4 measurement Jacobian for station i. Stacking the rows for all
visible stations at time ¢ gives the full measurement Jacobian H (2,0 (t),t), and the CT linearized
output equation becomes

§y(t) = H(znom(t),t) sz(t).
The resulting CT linearized system thus has state dimension n = 4, input dimension m = 2,

disturbance dimension 2, and output dimension p = 3Nyis(t), where Nyis(t) is the number of
ground stations that can see the spacecraft at time t.

Eulerized Discrete-time Linearization

With sampling period AT = 10 s, we can find a discrete-time linear perturbation model by
applying a Euler approximation to the CT linearized dynamics. At time ¢; we have

(5l‘(tk) = A &C(tk) + Bduy + Ty, where A, = A(x,wm(tk)),
and can approximate the time derivative as

5l‘k+1 — (53:k

o (tr) AT

Solving for dzj41 and collecting terms gives
Oxprr ~ (I + AT Ay) dxy + AT B duy, + AT T wy,.
We therefore define the Eulerized DT Jacobian matrices
Fi, =1+ AT Ay, G = AT B, Q. = ATT,
so that the discrete—time linearized perturbation dynamics can be written as
0Tk41 = Fy, 6x) + Gy Sug + Qi Wy

In our implementation, Ay is recomputed at each time step using the current nominal state
ZTnom(tx), and the corresponding F, Gi, and 2 are updated accordingly.
Evaluating the measurement Jacobian along the nominal trajectory gives

Hk = H(xnom(tk)7 tk)v
and the DT linearized measurement model for the stacked measurements of all visible stations is

(Syk = Hk 5a:k.



2.3 Dynamics Simulation

Initial Conditions and Perturbation
The total initial state is the sum of the nominal state x,,, and the initial state perturbation
Zo,pertury as provided by the problem statement and solution sketch:

0 0
Tnom = 0 = 0
To % | 7.72583519755957
[0
0.075
Zo,perturb = 0
| —0.021

To = Tpom + Z0,perturb

We assume no process noise, no measurement noise, and no control input perturbations.

2.3.1 Station Visibility

In determining visibility of the vehicle from a given ground station, both linear and nonlinear
simulations use the full simulated state to determine visibility, rather than simply the perturbation.
To ensure the vehicle’s angle is within 7/2, the following expression is used, to find the shortest
possible angle between the two (vehicle and ground station), regardless of the quadrant between
the two. This works at least when ¢; and 6, are defined in the range [—m,7].

((¢p;i —0;) +7 mod 27) — 7

The visibility condition is equivalent to determining if the angle between the position vector of the
vehicle relative to the ground station and the ground station and the origin of the earth centered
reference are within 7/2 radians, so alternatively, a method involving solving for the dot product
of these two vectors can be used. This visibility can be visualized by plotting the state cartesian
coordinates at arbitrary timesteps.

DT Simulated States and Nominal States (Cartesian)

6000 | S
e ~ON

yd N \\
/ N
4000 | .

/ \

\
2000 - .%: 11050

-2000 ®

4000 | A /

N =
-6000 - g o«

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

Figure 1: Vehicle position visualization.

2.3.2 Linearized DT simulation

State Simulation
The linearized DT simulation models the dynamics of the perturbations, and combines with the
analytical solution of the "nominal" state, and so the full state is given as:

Tk = Tnom (k) + oz (k)

The nominal trajectory is considered as a pure 2D circular orbit, with no inclination, and so the
position of the vehicle is fully described by the nominal radius r and the angular displacement



relative to the earth centered inertial frame described in the project description. Zom (k) in polar
coordinates is calculated as:

xnom,r(k) =T, xnom,@(k) = wt + Tnom,0

r(k) r

- (k) _ TW
xnom,polm’(k> - H(k) wt + Lnom,0

0(k) w

Znom (k) in cartesian coordinates is then calculated as:

rcos(6)

_ | —r0sin(h)
Znom (k) = rsin(6)

76 cos(0)
oz = Fi dxk—1 + Gi dug, + wy,

Of course, for part 1, this simplifies to: dxy = Fj dzp_1
Measurement Simulation

Similarly to the states, the linearized model of the perturbation of y(k) is modeled and combined
with the analytical solution of the "nominal" state, and so the full measurement is given as:

Y(k) = Ynom (k) + 0y(k)

Ynom (k) is found using the full nonlinear expressions for measurement described in the full nonlinear
simulation section and in the earlier derivation section, however at &, om (k).
dy(k) is calculated using the linearized expression, again described in parts a and b.

2.3.3 Full nonlinear simulation

Simulation Details

The state dynamics were simulated using the ode45 function in Matlab. The time step AT was
defined as 10s and the total simulation time must cover at least one full orbit period, but a
simulation duration of 14,000s was selected, to cover multiple orbital periods.

Nonlinear State equations
The current radius at time ¢ is calculated using:

r(t) = VX2(t) + Y2(t) = /a3 () + 23(2)

The nonlinear state equations are then given as follows:

JflzXZl‘g

. o T
x2:X:—M.73
r
153=Y=.734
Ty=Y =—p-—
T

with 1 = 398600km?>/s? being the standard gravitational parameter.



Nonlinear measurement equations

The size of the measurement vector y(t) changes with time ¢ as it depends on which stations can
currently see the spacecraft and therefore provide a valid measurement. Its dimension is p- N x 1
with IV being the number of stations that can observe the spacecraft at time ¢.

The measurement vector y*(t) for each station i at time ¢ is defined as follows:

, P (t) , P (t)
y' )= [p()| +0'(t) = | (D)
?'(t) ?'(t)

This assumes, there is no measurement error and therefore the measurement error vector ¢*(t) is
zero at each time ¢ and for each station i. Each element of this measurement vector is calculated
as follows:

Pt = V(X(H) = X1(1)2 + (Y (1) - Yi(1)?

it = [X (1) = XLB)] - [X (1) = XI(0)] + [V (1) = YOI (1) = Y (1))

p(t)
V(1) - V() )

Here [X(t),'Y(T),_X.(t),Y(t)] are given by the current state vector of the spacecraft. But
[Xi(t),YH(T), Xi(t),Yi(t)] are the measurement station i’s state vector at time ¢. Its state equa-
tions for the positions are given by the problem statement as follows:

Xi(t) = Rg - cos(wgt + 67(0))
Yi(t) = Rg - sin(wgt + 0°(0))

with Rp = 6378km (Earth’s radius), wp = gopsrad/s (Earth’s rotation speed) and the initial

angle 6°(0) of measurement station i at time ¢ = 0 given as:

9i(o)=(i_1)-%

For the velocity components of the measurement station’s state vector, we take the time deriva-
tive of the position equations:

d

Xit) = @Xg(t) = —wg - Rp - sin(wpt + 6%(0))
. d . ,
Yi(t) = aY;(t) =wg - Rp - cos(wgt + 6°(0))

Spacecraft visibility to measurement station

Due to the relative motion of the spacecraft and each station, the number of stations providing a
valid observation vector y'(t) varies with time and each station i only provides a valid observation
when ¢'(t) is in the given range:

O'(t) €[5 +07(1). 5 +6(1)]
where 0°(t) = tan"1 <)Y(:((?))

2.3.4 Results and Plots

The DT and nonlinear models are simulated with the same initial state perturbation, initial total
state, and number of timesteps as provided for the sanity checks, and inspecting of exact values
shows an exact match.



2.3.5 DT Linearized Simulation

States vs. Time, Linearized Approximate Dynamics Simulation

<10t
1
T T L
X 6560
X0 Y 157879 1
X 14000
X 2840
05— Y 653286 \/ Y 5608.03
K
0 2000 2000 6000 2000 10000 12000 14000
Time [sec]
z X 14000
E Y 415369
oy X 6560 ——
Y 7.44164 -
10 |
o 2000 2000 5000 2000 10000 12000 14000
Time [sec]
X 2840 X 6560
Y ‘885582 Y 655116 X 14000
.. Y 344652
K
0 2000 2000 5000 2000 10000 12000 14000
Time [sec]
0
>0 | X 6560
5| xo -
7 | Y 770888 Y 176079
R
= X 14000
~ X 2840
Y 71231 Y bor202
0 ° L | |
o 2000 2000 5000 2000 10000 12000 14000
Time [sec]
Linearized Approx. Perturbations Vs. Time
500
f X 3470 f f f
X0 Y 128.449
g |vo - X 7410 X 11060
B e B Y 72525
= .
500 L L L |
o 2000 2000 5000 2000 10000 12000 14000
Time [sec]
1
T T T T T
X 3470
= Y 0.147247 X 14000
£ . 7/ Y 0526195
= X 11060
> Y -0.528763
< 05— — —
4 | L
0 2000 2000 5000 2000 10000 12000 14000
Time [sec]
1000
T T T T T T
= 0 - -
E X0 X 3470 X 11060
= Yo Y 376818 X 7410 Y 55215
5. Y 72.4949 X 14000
— . Y 311014
500 L L
2000 2000 5000 2000 10000 12000 14000
‘Time [sec]
1
T T T T T T
X 14000
X 3470 Y 0149258
Y 0.00377979 X 7410 X 11060 —
. Y 0158185 Y 0.196027 g
s | L |
0 2000 2000 5000 2000 10000 72000 14000

Time [sec]

Figure 3: DT Linearized Simulated State Perturbations

10



DT Simulated Measurements vs. Time
E T T T T 7] [eswont
ol k] (
3 1500, —  |estion
/ 1
= 500 i\ o Sihons
o 1 I | | i | oSiaton 11
0 2000 4000 6000 8000 10000 12000 14000 | @ Stafion 12
T T T T T T
g ! o
;‘”;.r Frrerecr R N S NS S O S G W G- W S G S
& ! H N . . . . H H . . . . . . - . . .
£ of H : 3 . . = * : s : . - : ¥ . . . 2. . * .
IS ddddId I IS I I JddI I IdIIT T dJ
o 2000 4000 6000 8000 10000 12000 14000
4
T T, T T 7
[ P4 J J bt e J
S P S P P E JJ
20 J J ~ J J B
st rr [ J ~r i -
. -r | | A iJ I
0 2000 4000 6000 8000 10000 12000 14000
T T — T T | E—— T 3
=} ————r — |
—_— —_—
eqp— )

2000 4000 6000 8000 10000 12000

Time (1)

Figure 4: DT Linearized Simulated Measurements

2.3.6 Nonlinear Simulation

States vs. Time, Nonlinear Dynamics simulation

10
1 I \ T T \ \
05] x o X 1350 x a0 T X 10;7707.;\\ —
B3 Yo | Y 177 Y -300 X 7250 Y 6525 N
<0 .\ A Y -3557 — \\ X 14000
x Ne—— Y -5468
05 - // < - B N | Bliand
4 | I I | | I
0 2000 4000 6000 8000 10000 12000 14000
Time (s)
10 T 1 T T 1 T
2 5/X0 X 4010 _
Y 0.075 Y 7.814 X 10970 )
E NA Y Lo X 14000
z X 7250 . Y 4379
] X 1350 o
x5 . Y -7.669 ~ i -
10 T L [ | | 1
0 2000 4000 6000 8000 10000 12000 14000
1 104 Time (s)
I I I I [— I
e —, X 10970 —
05 ); g L~ X 1350 X 7250 Y 1485 / -
E o Y 6705 \ v s6a1 R X 14000
= X 4010 / Y -3654
.
05— | Y6570 N - .
. -
4 | \ ! | \ \
0 2000 4000 6000 8000 10000 12000 14000
Time (s)
10 T T T T T . T
2 5/X0 X 1350 X 4010 o X 10970 | —
B Y 7.705 Y 0.162 Y -0.395 Y 7.512
2 L Yl l J 7250
5 \ / Y -4.169 X 14000
S 5L . Y -6.483
—_— \“ ~— 7// \ —
10 ! | ! 1 | |
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Figure 5: States vs. Time, Nonlinear Dynamics Simulation

11



2.3.7 Nonlinear Simulated Measurements vs. Time

Nonlinear Simulated Measurements vs. Time
2500 . .
2000
5 e |
§)1500’_ | | _
%wm, ' ‘ ‘
500

0 | 1 | | | |
0 2000 4000 6000 8000 10000 12000 14000

p (Range Rate)
o

0 2000 4000 6000 8000 10000 12000 14000

4 T T T T T
I J’ J’ J
L 1L 1
< 0 r r [ f f f f
S .(frsl | r(fr[ | | ,ff
40 2000 4000 6000 8000 10000 12000 14000
‘|2 - T T — T T a— T -
= g -—T -— ]
S 4t -— - -
g 3 i _— —— —— ]
é_-_—‘_ 1 | ——— | | —_I— E
0 2000 4000 6000 8000 10000 12000 14000
Time (t)

Figure 6: Nonlinear Simulated Measurements vs. Time

12



2.3.8 Comparison

The DT linearized simulation states can be simulataneously plotted, and the error of the DT
linearized simulation versus the nonlinear simulation can be calculated. At the scale of the full
states, it’s difficult to see any error. It can be seen that error increases with time in every part of
the state.

DT Linearized vs. Nonlinear Simulation States

10000
= 5000F T -
= or AN
-5000 [ e~ ! | 1 ! | —
0 2000 4000 6000 8000 10000 12000 14000
t[s
on ) [s] _
—_ e ™~ -
%o / ™
: <.
% \\H , \
_10 | | | | | | 1
0 2000 4000 6000 8000 10000 12000 14000
t[s]
10000
= 5000~ el )
£ ok” N\ e F\\
= \\‘ ) S
-5000 I T~ \ I — I ]
0 2000 4000 6000 8000 10000 12000 14000
t[s
100 - [s]
= . P ET L:pearized
£ ok N P onlinear
& N
=) - N
—_— — -
_10 | 1 | l 1 | ]
0 2000 4000 6000 8000 10000 12000 14000

t[s]

Figure 7: DT Linearized vs. Nonlinear Simulation States

DT Linearized State Error vs. Nonlinear Simulation States
Linear Results - Non-Linear Results

T T T T T
100{— —
E
£ 0 -
=

0 2000 4000 6000 8000 10000 12000 13000
Time [sec]

2000 4000 6000 8000 10000 12000 13000
‘Time [sec]

2000 4000 6000 8000 10000 12000 13000
Time [sec]

L1

0 2000 4000 6000 8000 10000 12000 13000
Time [sec]

Figure 8: DT Linearized State Error vs. Nonlinear Simulation States

13



Measurement Comparison

Due to the complexity of comparing all measurements, this comparison is omitted, but it can be
seen visually that the DT measurements deviate from the nonlinear measurements with increased
time, particularly in the range rate measurements.

3 Part II - Stochastic Nonlinear Filtering

3.1 Stochastic Nonlinear Filter Validation via Monte Carlo Analysis

To validate the statistical consistency and performance of the Linearized Kalman Filter (LKF) and
the Extended Kalman Filter (EKF), a Monte Carlo Truth Model Test (TMT) simulation
was conducted. This involved running the filter N = 1,000 times over a trajectory of K = 1,400
time steps (14,000s, more than a full orbit, providing multiple station visibility cycles and sufficient
data points for y2-testing). N was chosen as 1,000 to ensure sufficient accuracy, as according to
the Law of Large Numbers, the standard error of a normal distribution, as N grows, shrinks

. 1
proportionally to TN

3.1.1 Ground Truth Simulation

The true state trajectory, X¢rue(k+1), is generated using the full nonlinear dynamics (using Matlab’s
ode45) and full nonlinear measurements, incorporating true process noise wy and measurement
noise v according to the provided process noise covariance matrix Qe and measurement noise
covariance matrix Rirue.

Discrete-Time Noise Modeling
To get a discrete-time process noise sample from the continuous-time process noise covariance
Qtrue, We first pick a sample & and then multiply that with €y to get DT process noise wy.

&k ~ N(0, Qirue)
Q(t) = D(t)AT
wi = Qe = QKAT),
where T relates process noise to the state dynamics, and AT is the sampling time (10 sec).

The process noise w; and measurement noise vy are additive zero-mean, white, and Gaussian
(AWGN):

Initial State Randomization
To ensure the statistical validity of the TMT, the true initial state X4;46(0) is randomly instantiated
using the filter’s initial estimate x*(0) and its state estimate covariance P*(0):

xtrue(o) ~ JV-(}Ach (O)v P+(O))

3.1.2 Filter Consistency Testing

The consistency of the filter’s estimated covariance matrices (P and S) with the actual errors and
innovations is evaluated using the Normalized Estimation Error Squared (NEES) and Normalized
Innovation Squared (NIS) metrics. A significance level of o = 0.05 was chosen for the x? tests.
With a = 0.05, we obtain a 95% confidence interval for the test statistic, which is a standard
compromise between being too strict and too permissive. Therefore, for our correctly tuned filter,
we still expect about 5% of the NEES/NIS points to fall outside the bounds purely by chance.

14



Normalized Estimation Error Squared (NEES)
The NEES statistic €, (k) quantifies the normalized state estimation error X(k) = X¢ue(k) — x(k).

e Statistic: The NEES statistic at time k is calculated as:
ex(k) = %(k)TP* (k) "'x(k)
where PT (k) is the filter’s updated state estimation covariance.

e LKF Adaptation: While the LKF estimates the perturbation state 0x = x — X,om, it
still returns the full state and thus the error can be computed the same way instead of using
using the perturbation:

X(k) = (Xorue(k) = Xnom (k) — (X7 (k) — Xnom (k) = Xerue(k) — %7 (k)

¢ EKF Adaptation: The EKF estimates the total state X, so the error is the total state
error anyway:

%(k) = Xgrue(k) — X1 (k)

e Test: The average NEES (ANEES) across N runs is compared to the x? confidence interval
with IV - n degrees of freedom, where n = 4 is the state dimension.

N
2 i 2
XNn,a/2 < ZE’;(]C) < XNn,1—a/2
=1

Normalized Innovation Squared (NIS)
The NIS statistic €, (k) quantifies the normalized measurement innovation (residual) ¥ (k) = yirue (k) —

y (k).

Statistic: The NIS statistic at time k is calculated as:

ey(k) = y(k)"S(k) "'y (k)

where S(k) is the innovation covariance matrix.

e LKF Adaptation: The LKF innovation y(k) uses the difference between the true measure-
ment and the linearized predicted measurement:

Y (k) = Yirue(k) — (W(x™ (k) — H(xnom (k))6x™ (K))

¢ EKF Adaptation: The EKF innovation uses the difference between the true measurement
and the predicted measurement from the full nonlinear measurement function h:

S’(k) = Ytrue(k) - h(k_ (k))

e Test: The average NIS (ANIS) across N runs should be compared to the x? confidence
interval with IV - p degrees of freedom, where p is the time-varying measurement dimension
(i.e., 3x number of visible stations), but for simplicity, a constant p = 3 is considered).

N
2 i 2
XNp,a/Q < Zgé(k) < XNp,l—oc/2
i=1

3.1.3 Filter Tuning Methodology

The filter needs to be tuned by iterating on the "guessed" process noise covariance Qkr (which
may not equal Qyrue) until both the ANEES and ANIS plots largely fall within their respective
1 — a confidence bounds. A consistent filter (ANEES/ANIS within bounds) indicates that the
filter’s covariance matrices are correctly reflecting the magnitude of the actual state estimation
errors and measurement innovations.

15



3.2 Linearized Kalman Filter (LKF)

The LKF performs its estimation in a loop, for each timestep, according to the specified sample
time.

3.2.1 Initialization

As an initial guess, the Linearized Kalman Filter is initialized with the following values:
s&d =10,0,0,0]"

P = diag(o2y, 02y, 029, o) = diag(1-107% 1-107%, 1-107°, 1-107°)

Having an initial estimate of & = xyoy 1S just our best guess, as we don’t have any additional
information on what the initial perturbation could look like. Setting PS‘ as above, tells the filter
to trust the position estimate slightly more than the velocity estimate (higher certainty) and that
the initial estimate generally is quite good. Setting it as a diagonal matrix comes from the fact
that we don’t expect errors in these state variables to be correlated.

3.2.2 Time update/prediction step
02y, = Fpdd) + Groi
Pk_+1 = FkP;ijT + Qkaﬁg

The calculation of Fj, is described in Part I. In this orbit determination problem, the input to
the plant is not considered, so Grdd, = 0. € is calculated using a similar Euler’s method
approximation to F. ~

il nomir) = AT - T'(t)] (t=t,)

3.2.3 Index Convention

Because the k=0 value of the state is an initial guess, the above is rearranged to obtain the estimate
based on the previous timestep, where applicable. 02, ; is replaced with 42, , and 67, is replaced
with 62,_,, so for example:

0dy = Fy_103;_,

This has not been necessarily reflected in this report, but is reflected in the implementation.

3.2.4 Measurement update/correction step

When a measurement is available, the measurements info is treated as y,. Because the LKF
estimates perturbations, this is converted into an equivalent perturbation measurement based on
the difference with the expected measurement from the nominal trajectory at tj :

OYk+1 = Yk+1 — yZH

To handle measurements from multiple ground stations, each nominal measurement must be found
using the nominal state and the corresponding station, and they must be stacked, in a process very
similar to the DT simulation. Throughout this report, no distinction is necessarily made that a
"Stacked" version of the matrix is being used, and the matrix simply treated as having a size that
changes with time.

oh H, y;+1,1
D . Hy, = - Ye+1, = h($k+1,z‘) Hy =
¢ T=E) H, yl:—&-l,n

f{k-',-l,i =
The equivalent Rj41 must be found by combining the Ry values in block diagonal form.

o

16



In practice, though, there is only a maximum of two ground station measurements at any given
time, due to their spacing. However, when calculating the perturbation, care must be taken to
subsequently wrap the angle component! If the wrapped measurement perturbation is dy;, I

G —2m Qp>T
= P +2m ¢ < -7
Dk otherwise

Now this can be used to find the innovation vector for the measured perturbation vs the predicted
perturbation. ~
ey k = OYk+1 — Hp4102,

The Kalman gain can be found with:
_ p— T 7 - 7T -1
Ky = P Hi [Hi 1 Py Hig g + Ry

The measurement covariance (which will also be used to evaluate the LKF) is found separately,
and also used to get the Kalman gain:

Sk = Hy1 Py Hiy + Ripr — Kiyr = Py (HE 4 [Se] ™

We can now find the estimate given the previous best estimate and latest measurement, again
using the innovation vector:

M’Zﬂ = 5551;4-1 + Kk+1(5yk+1 - ﬁk+1555lz+1) — 55”2-;1 = 5‘%;4-1 + Kk+1(ey$k)

Now the Kalman gain, measurement matrix, and covariance of the prediction estimate can be used
to calculate the updated estimate covariance.

Pl =0- Kk"rlgk"rl)Pky_-‘,-l

No Measurements
If no measurements are available, the best estimate and covariance for that timestep is the best
estimate and covariance based on previous predictions and measurements:

A+ A= + o —
L1 = Ty Pl =P

3.2.5 Output

The measurement covariance, innovation vector, and estimate covariance can all be used as-is, but
the full state estimate must be calculated from the state of the nominal trajectory at the particular
timestep.

0x(t) + Tnom(t) = z(t)

3.2.6 Results

a. Plots for a "typical" simulation instance

The "typical" simulation instance is initialized with an arbitrary value beyond the variances used
for the monte-carlo, to show how large perturbations cause problems with the estimate. The initial
covariance chosen is the same as in the truth model testing.

Sz = [0.0001,0.005,0.0001, —0.002]”

The plot below shows the simulated noisy measurements used to test and tune the linearized
Kalman Filter.

17



Nonlinear Simulated Measurements vs. Time

)

NV

o [Range

)

1

Rate

] [.-"knglu:,ﬁ'fJ (IREHLg{‘

14000

L] 14000
a ]
= E
= .
o J:
«“ L L - 1 | -l -

L] 2000 4000 6000 BO0O 10000 12000 14000

Time (t)

Figure 9: Typical Simulated Measurements

The plot below shows the state estimate from the linearized Kalman filter (LKF) compared

with a typical simulation state that correspond to and result in in the above simulated measure-
ments.

Because this is a small perturbation, the initial estimate follows closely with the truth model
state. As time goes on, the state drifts from the nominal trajectory, and the quality of the estimate
decays rapidly. The error goes far outside the expected uncertainty in the measurement. On this

scale, the uncertainty bounds are not visible, but the difference between the estimate and the truth
model is:

DT Linearized Kalman Filter

10000 12000 14000
sl

Figure 10: Discrete LKF State Estimate Compared with Simulated Measurement

18



Finally, the below plot shows the error state estimate from the LKF and the example truth
state. Again, error increases to the point where it is not possible to see the estimate error compared

to the uncertainty.

DT Linearized Kalman Filter Error

3 2000

tis]

o 2000

tisl

ts]

tis)

Figure 11: Linearized Kalman Filter Example Run Error

b. NEES test statistic points
These are the initial results for the NEES statistics of the Linearized Kalman Filter. As one can
clearly see, the values grow massively out of bounds, which indicates that a lot of tuning needs to

be done.

11
g X10

ANEES Value

LKF ANEES Test for Filter Consistency

O ANEES (Average NEES)
= = = 95% Lower Bound

= — —95% Upper Bound
----------- Expected Value (ny)

500 1000 1500
Time Step (k)

Figure 12: Initial result of NEES plot for LKF

19



It turns out there was actually more involved than just tuning the variances and parameters,
and after refining our code (mostly inconsistencies in indices) and then tuning the parameters,
LKF produced the following NEES plot:

o X 10° LKF ANEES Test for Filter Consistency x10° LKF ANEES Test for Filter Consistency
O ANEES (Average NEES) O ANEES (Average NEES)
— = =95% Lower Bound — = =95% Lower Bound
= = =95% Upper Bound — — =95% Upper Bound
85 worewee Expected Value (ng) g ] S p— Expected Value (n,)
[S]
o
7r e}
® 251
o
6 o
8¢
o o) o e 2F
B 3o 2
g 5 2
E &S Q
Z 4t 9o Zz15fF
o
< %é 0o <
o
% OOO
R g (e} 10
OOO [e)
076 ©
® 9,0
0-9Q e}
& % 0.5+ o)
% o)
600 800 1400 0 100 200 300 400 500 600 700 800
Time Step (k) Time Step (k)
Figure 13: Final ANEES plot for LKF Figure 14: Final ANEES plot for LKF (zoomed
(full simulation) into first 8500s)

As one can see in Figures 13 and 14, initially the error stays at or close to the expected bounds,
but after about 3000s into the simulation, the values start to slowly oscillate and these errors start
to accumulate until they increase exponentially after about 7000s. This behavior is to be expected
as the LKF linearizes about a fixed nominal circular orbit, whereas the true trajectory with process
noise changes over time. This accumulated error over time causes the linearization to break down.

c. NIS test statistic points

These are the initial results for the NIS statistics of the Linearized Kalman Filter. Same as with
the NEES statistics, also here one can see that massive tuning is needed.

20



5 _xm'“LI(F ANIS Test for Measurement Consistency

1.87T

1.6

1.4}
wl2p
= O ANIS (Average NIS)
= -8 = = = 95% Lower Bound
v — = — 95U Upper Bound
% ----------- Expected Value (ny)

087

0.6

04T

0.2}

0 500 1000 1500
Time Step (k)

Figure 15: Initial result of NIS plot for LKF

After massively updating the code and arriving at the desired values for @, Py, LKF produced
the following NIS plot:

LKF ANIS Test for Measurement Consistency

LKF ANIS Test for Measurement Consistency o g
18000 - O ANIS (Average NIS) | ©
O ANIS (Average NIS) 1200 = = =95% Lower Bound
— — —95% Lower Bound OO — = =95% Upper Bound
L =95% Upper Bound s Expected Value (ny)
16000 - Expected Value (n,) © ° o
o
o o o©
14000 - o  1o0op o o
0o © o ©
o]
o
12000 - 0
%
[ g
£ 10000 - 2
< 2
bt 4}
4} Z
Z 8000} <
6000
4000
2000
0
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600 700 800
Time Step (k) Time Step (k)
Figure 16: Final ANIS plot for LKF Figure 17: Final ANIS plot for LKF (zoomed into
(full simulation) first 8500s)

Figures 16 and 17 show, that much like for NEES, also NIS initially stays at or close the
expected bounds (with some outliers right from the beginning), but after about 2500s the NIS
value starts to massively increase.

21



3.3 Extended Kalman Filter (EKF)

3.3.1 Initialization and EKF setup

For the Extended Kalman Filter (EKF), we estimate the full nonlinear spacecraft state
wp = (X, X, Vi, Vi]”,

directly, rather than a perturbation about a nominal trajectory. The discrete—time nonlinear
dynamics and measurement models can be written as

Tpp1 = [(@p, uk, wi), Ykt1 = W(@pp1, Vpt1),

where wuy, is the (zero) control input, wy is the process noise associated with unknown accelerations
in the X and Y directions, and vg4; is the measurement noise in range, range rate, and elevation
angle from the ground stations.

The nominal circular orbit used throughout the project has radius

ro = 6678 km,
so that the nominal initial state is
"o 6678
0
Znom,0 = 0 = 0 (km, km/s)

ro 5| 77258
To

For the EKF we deliberately start from a slightly biased initial estimate with position and
velocity offsets
020=1-10"%km,  0,=1-10"° km/s,

so that the initial state estimate is
ig = Znom,0 +

The corresponding initial covariance is chosen diagonal,
P = diag(o2y, 00y, 029, 0og) = diag(1-107% 1-107° 1-107%, 1-107°),

which encodes larger initial uncertainty in velocity than in position, but does not assume any
cross—correlation between the states.

The truth-model simulation uses the provided continuous—time acceleration noise covariance
Qtrue and single-station measurement covariance Ry.n.. For the EKF we introduce a separate
guessed acceleration covariance

Qxr = 107191y,

and tune its magnitude using NEES /NIS tests (see Part 5(b,c)). The EKF measurement covariance
uses the same value as the truth model, i.e. Rxkr = Rirue- When multiple stations are visible at a
given time, the filter builds

Rk = blkdiag(lee, ey Rtrue);

with one 3 x 3 block per visible station.

At every time step, the required Jacobians are evaluated at the most recent EKF estimate: the
dynamics Jacobian Ay, is evaluated at iﬁ and the stacked measurement Jacobian Hj 1 is evaluated
at Ty ;.

3.3.2 Time update (prediction)

Starting from the previous estimate (a%ﬁ, P,:,r ), the EKF prediction step proceeds as follows.

22



State prediction. The nonlinear orbital dynamics are numerically integrated over the sampling
interval At, with zero input,
T, = (2, ug, Aty,),

using the same nonlinear dynamics routine as in the truth model. Because uj = 0 for this problem,
only gravity and process noise drive the motion.

Covariance prediction. To propagate the covariance, we linearize the dynamics about 932',

_of
_axm ’

e
=i}

Ay,

and approximate the discrete-time state transition and noise-influence matrices as
Fk'&”I—FAtkAk, Qk"&iAth,

where

o = O
_ o o o

0

maps the white acceleration disturbances in the X and Y directions into the state. The predicted
covariance is then
p-

k1l = PP FL 4+ 0 Qur Q.

3.3.3 Measurement update

At the next measurement time, the filter uses whichever ground stations report measurements.
Because the propagated nonlinear state will not match the true state exactly, the set of stations that
are actually in view in the noisy truth simulation may differ slightly from what would be predicted
from the EKF state alone. In the implementation, we therefore always stack the measurements
from the station IDs that actually report at time k + 1, and construct the corresponding stacked
measurement vector and Jacobian using those same station IDs.

Each visible station contributes a range, range-rate, and elevation angle measurement. These
are stacked into a single measurement vector, and Ry is built by repeating Ry along the block
diagonal.

Predicted measurement. Given 2, ; and the list of visible stations at time k + 1, the EKF
computes the predicted measurement

Q,;+1 = h(jjl;ﬂ)a
and the stacked measurement Jacobian

~ oh
Hk+1 = %

T=E
Innovation and gain. The stacked innovation vector and its covariance are

- - 5 - AT
Ukt1 = Yk+1 — Ypp1s Sk+1 = Hy1 P 1 Hpyy + R

Because the elevation angle is wrapped to the interval [, 7] in the truth model, the corresponding
entries of U541 are also wrapped to [—, 7] before computing Sk11 and the Kalman gain, to avoid
large jumps when the angle crosses +.

The Kalman gain is then

K1 =P

7T a1
et 1 k15541

23



Posterior update. Finally, we update the state and covariance at k + 1,
I =8 + KOs,
Pl;:-l = (I — Ky+1Hg41) Py
This completes one EKF cycle, which is repeated for all K = 1400 steps with sampling time
At =10 s.

3.3.4 Results

a. Typical single-run results

Before performing the full NEES and NIS consistency tests, we examine a single representative
EKF run driven by a nonlinear truth simulation with process noise Qe and measurement noise
Rirye- Figures 18-20 summarize the behaviour of the filter for this run.

Figure 18 shows the true noisy state trajectory (black) and the EKF posterior mean (blue) for
all four states, along with the corresponding 20 bounds derived from the diagonal of P,j' (red
dashed curves). The EKF starts from a noticeably biased initial condition, but within the first few
hundred seconds the estimated orbit locks onto the true trajectory and the covariance collapses to
realistic values. Over the remainder of the trajectory, the estimated states track the truth almost
exactly, and the true state stays well inside the +20 envelopes.

Ground Truth vs EKF Estimated State

X Position X Velocity

8000 8

6000

4000

2000

X (km)
X (kmls)

-2000

4000

6000

8000
10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000
Y Velocity

Y Position
8000

6000

4000

2000

Y Ganls)

Y (kom)

2000

4000

6000 5

-8000 8
2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000, 0
Time (s)

Figure 18: Ground truth vs. EKF estimated states with +2¢ covariance bounds for all four state
components.

To better assess the estimation accuracy, Figure 19 shows the state estimation error e, (k) =
i: — Ttrue(k) together with the corresponding +20 bounds. The position errors remain on the
order of one meter, while the velocity errors are on the order of 1073km/s, and the errors are
generally well contained within the +2¢ envelopes. There is no obvious long-term bias or drift,
which is consistent with a well-tuned filter and a reasonable choice of Qkp.

24



EKF State Estimation Error with + 26 Bounds

X Position

RV AVINVANS i

Y Position

ey, . ) L
NN Ao A AN WA -
ANAAYE AN AR VR Y AN, ‘\/

NS TSNS TN T
NN

Time (s)

Figure 19: Error in EKF estimated states with +20 covariance bounds.

Figure 20 compares the noisy simulated measurements from the nonlinear truth model (blue
points) with the EKF predicted measurements h(&, ) (red points) for range, range rate, and eleva-
tion angle. The EKF predictions closely track the noisy measurements during every station pass,
including gaps when no stations are visible, indicating that the filter is correctly fusing information

from the switching measurement set. The predicted measurements appears to properly filter the
noise from the provided measurements.

Nonlinear Simulated Measurements vs Time (EKF)
Range (p) Values

0 2000 4000 5000 3000
Range Rate (p) Values

f""*f“‘ r‘*&r‘r‘f&“ﬁﬁ&#rﬁiﬁﬂﬁ#f‘f*ﬁ

-—444¢~¢Ja¢=«éf### ¥~!x¥#+fﬁf€w

e I I I i I I J

..~_

2000 4000 6000 8000

A D_ Angle (¢) Values
PP LAY e DL A
B PR Ny age i o
H: el iA | wr O]
0 w0 4000 £ Time (s) £

Figure 20: Nonlinear simulated measurements vs. time (blue) and EKF predicted measurements
(red) for range, range rate, and elevation angle.

25



b. NEES test statistic points

6 x10'>  EKF ANEES Test for Filter Consistency

O AMEES (Average NEES)
= = = 95% Lower Bound

— — — 95% Upper Bound
----------- Expected Value (ng)

ANEES Value
(%)

0 500 1000 1500
Time Step (k)

Figure 21: Initial result of NEES plot for EKF

These are the initial results for the NEES statistics of the Extended Kalman Filter. As one can
clearly see, the values grow massively out of bounds, which indicates that a lot of tuning needs to

be done.

After tuning and tweaking the code, the final NEES plot for the EKF looks like this:

45 EKF ANEES Test for Filter Consistency

O ANEES (Average NEES)
— — —95% Lower Bound
=95% Upper Bound - =
-------------- Expected Value (n,)

ANEES Value

L L L L 1 |
0 200 400 600 800 1000 1200 1400
Time Step (k)

Figure 22: Final NEES plot for EKF

Figure 22 clearly shows that while the spread of the error is largely correct, we still arrived at a

26



much lower average (about 1.5) than expected (4=n). However, compared to LKF, the error stays
largely the same during the whole simulation of 14,000s and doesn’t increase exponentially.

c. NIS test statistic points

- EKF ANIS Test for Measurement Consistency
3 R P T TTRRRRTTTTRERNNN—..
25T
1] 2|
= O ANIS (Average NIS)
= = = =958 Lower Bound
%) — — — 958 Upper Bound
Z .=l e Expected Walue (ny)
=T 15 r =
1t
05
bg-
0 500 1000 1500
Time Step (k)

Figure 23: Initial result of NIS plot for EKF

These are the initial results for the NIS statistics of the Extended Kalman Filter. While the
results for NIS are very different than with the LKF, additional work is needed to find out why

ANIS seems to stay at or around zero.

After finding the error in our code and tuning the system, the final NIS plot for the EKF looks

very promising:

27



EKF ANIS Test for Measurement Consistency

6.5
e o
(o] 5] (o] o) o o0 e} 8
6 @ § o8 3 0 o
g o o@@(&@% 08@ 8OO@@OO 958,4°
8o g 2g © 8 8 gogog o °© ©
o o o] O ANIS (Average NIS) 0 o
551 o O o O © 8 — — =95% Lower Bound 8
- o — — =95% UpperBound 0 O O
O o wmeeens Expected Value (ny)
o o o o ©
5l o o S 0® © ., ©oo
O
o o) 6 © 8 o o
O O O
© 5 © ) o o, ©
4.5 e} © o o

ANIS Value

0 200 400 600 800 1000 1200 1400
Time Step (k)

Figure 24: Final NIS plot for EKF

Figure 24 clearly shows that while there are some outliers, we largely stay within the bounds,
showing high measurement consistency for the whole simulation of 14000s and doesn’t increase
exponentially or fluctuate.

3.4 State trajectory estimation and comparison

For Part 6 we applied both the linearized Kalman filter (LKF) and the Extended Kalman Filter
(EKF) to the provided observation log orbitdeterm_finalproj_KFdata.mat. Both filters use the
same sampling time AT = 10 s, the same initial covariance

Py = diag(02y, 02y, 029, 05y) = diag(1-107%, 1-107%, 1-107°, 1-107°),
and the same process and measurement noise settings. The process noise covariance used in all

runs is "
_ 10~ 0
Qxr=1-1071"1, = [ 0 1010}7

The measurement noise covariance is taken directly from the data file, Rxr = Rirue-

Figure 25 shows the LKF estimated states with +20 bounds computed from the filter covariance.
The position components X and Y follow the expected sinusoidal orbit and the uncertainty stays
small compared to the orbital radius. However, in the velocity plots (X and Y) the LKF develops
noticeable small-scale oscillations toward the end of the time window. These are expected and
seem to be a result of the linear model struggling with the nonlinear dynamics.

Figure 26 shows the same plots for the EKF with the same Qkr and Rkxr. Here the position
and velocity trajectories are smooth over the entire 14,000 s window, and the +2¢ envelopes remain
narrow. Because the EKF repeatedly relinearizes about its current state estimate instead of a fixed
nominal orbit, it handles the nonlinear two—body dynamics better and does not see the deviation
as the time step increases like the LKF does.

28



8000

6000

4000

2000

X (km)

2000

4000

6000

Linearized KF Estimated State with + 26 Bounds
X Velocity

X Position

2000
0

8000

6000

4000

2000

Y ()

2000

4000

6000

2000

4000

6000 8000 10000 12000 14000 0
Y Position

2000

Y (kimls)
6 b kKo oN a e e

6000 8000 10000 12000 14000

Y Velocity

4000

8000
0

2000

4000

10

8000 10000 12000 14000, 0

6000 X
Time (s)

2000

4000 6000 8000 10000 12000 14000

X (km)

8000

6000

4000

2000

2000

-4000

6000

8000

8000

6000

4000

2000

Y (km)

2000

4000

6000

8000

EKF Estimated State with + 26 Bounds

X Position X Velocity

o WXl

0 2000 4000 6000

Y Position

8000 10000 12000 14000 0

S L N

2000 4000 6000 8000 10000 12000 14000

Y Velocity

2000 4000 6000

s

000 10000 12000 14000

o
Time (s)

2000 4000 6000 8000 10000 12000 14000

Figure 25: Linearized KF estimated states with Figure 26: EKF estimated states with 20
+20 bounds.

bounds.

To compare the filters directly, Figure 27 overlays the LKF and EKF state estimates. The

position estimates from the two filters lie on top of each other which confirms that the estimated
parameters are correct. Since we do not have the true state for this data log, we cannot compute
an actual error, but it would be expected for a physically reasonable orbit to not have these rapid
jumps in velocity. This would strongly suggest that the EKF is doing a better job of tracking the
underlying motion with the same noise assumptions.

8000

6000

4000

2000

X (k)

-2000

4000

6000

-8000

8000

6000

4000

2000

Y (km)

-2000

-4000

6000

-8000

X Position

Linearized KF vs EKF Estimated States

X (kmls) .

X Velocity

2000

6000
Y Position

4000 8000

o Y(kmls)

2000 4000

6000

Y Velocity

8000

10000 12000 14000

4000 0
Time (s)

2000 4000

6000

8000

10000 12000 14000

Figure 27: Direct comparison of Linearized KF (blue) and EKF (red) estimated states.

Finally, Figure 28 compares the logged measurements to the EKF predicted measurements for

range, range rate, and elevation angle. The red EKF predictions lie almost exactly on top of the
blue measurement points for every station pass, including the gaps when no station is visible. This
suggests that the EKF state estimate is consistent with the actual data stream and that the chosen
Qkr and Rkr values are reasonable for this problem.

29



Observation Log: Measurements vs EKF Predicted Measurements

Range (p) Values

2500
2000
Fs00

000

500 [

6000 8000 10000 12000 14000
Range Rate (p) Values

Frrrrrrrrrfrcrrrrr e

i

ey X P .

R R R R R R R R R R R R R R
0 2000 4000 6000 8000 10000 12000 14000
. Angle (¢) Values

3 - 7 s g [ R A A

o J 7 rr = g7

s £ i J i /)

I / r f H J /

S i g/

S _/f;‘-‘j‘/ /.-/‘:':'i

u | I
0 2000 4000 6000 Time (S) 8000

Figure 28: Observation log measurements (blue) versus EKF predicted measurements (red).

Overall, both filters give usable state estimates on the observation log, but the EKF does a
better job. With the same initial conditions and noise settings it produces smoother, more realistic
states while matching the measurements. The LKF starts to show artificial oscillatory motion
because it is tied to a fixed linearization about the nominal orbit, whereas the EKF continually
updates its linearization around the current estimate and better captures the nonlinear orbital
dynamics.

30



4 Estimation Haiku - Advanced Question 13

Noisy data in
Kalman learns and updates it
Corrected path out

31



List of Figures

0 O Ut = Wi =

14
15
16

17
18

19
20

21
22
23
24
25
26
27
28

Vehicle position visualization. . . . . . . . .. .. oL oo 7
DT Simulation States and Nominal States . . . . . ... .. ... ... ... .... 10
DT Linearized Simulated State Perturbations . . . . . . . .. ... ... ... ... 10
DT Linearized Simulated Measurements . . . . . . . . . . ... .. .. ... .... 11
States vs. Time, Nonlinear Dynamics Simulation . . . . . ... ... .. ... ... 11
Nonlinear Simulated Measurements vs. Time . . . . . ... .. .. ... ... ... 12
DT Linearized vs. Nonlinear Simulation States . . . . . ... ... .. ... .... 13
DT Linearized State Error vs. Nonlinear Simulation States . . . . .. .. ... .. 13
Typical Simulated Measurements . . . . . . . .. ... .. L. 18
Discrete LKF State Estimate Compared with Simulated Measurement . . . . . . . 18
Linearized Kalman Filter Example Run Error . . . . . . . ... .. ... ... ... 19
Initial result of NEES plot for LKF . . . . ... ... ... ... ... .... 19
Final ANEES plot for LKF

(full simulation) . . . . . . . ..o 20
Final ANEES plot for LKF (zoomed into first 8500s) . . . . . .. ... ... .... 20
Initial result of NIS plot for LKF . . . . . .. ... . . ... .. 21
Final ANIS plot for LKF

(full simulation) . . . . . . . .. 21
Final ANIS plot for LKF (zoomed into first 8500s) . . . . . ... ... ... .... 21
Ground truth vs. EKF estimated states with £2¢ covariance bounds for all four
state components. . . . .. L. L L L L e 24
Error in EKF estimated states with +20 covariance bounds. . . . . . . . . . .. .. 25
Nonlinear simulated measurements vs. time (blue) and EKF predicted measurements

(red) for range, range rate, and elevation angle. . . . . . ... ... L. 25
Initial result of NEES plot for EKF . . . . . . ... .. ... ... ... ... .... 26
Final NEES plot for EKF . . . . . .. ... . 26
Initial result of NIS plot for EKF . . . . . .. ... .. . .. 27
Final NIS plot for EKF . . . . . ... 28
Linearized KF estimated states with 20 bounds. . . . . . . ... ... ... ... 29
EKF estimated states with £20 bounds. . . . . . . . . .. ... ... ... 29
Direct comparison of Linearized KF (blue) and EKF (red) estimated states. . . . . 29

Observation log measurements (blue) versus EKF predicted measurements (red). . 30



5 Appendix

5.1 Appendix A: Equation Derivation

For Bcin —lenlsed Coordirmptess

X X, X X, £ X,
&) = * =% = x@»= K% o 6,00 = i SR X2 4%t
Y %3 Y A ‘s(x) Xy
Y Xy v ‘;-u {:q(ﬂ - h:: + “s*‘:’;
$60

Fnd Oyvmics  Jucbion  Alx)*

Oh dh a9k
TR
L df, df df
¢ 96 _ o ne vp xm
Al = 5 AT AT AN
I dxg Ixg %y

b 96, 3k 3k

9% Ixg Ixg d%y

Eo;s Ones t

(=%, = f,f‘ =[o 1 o o) £60= %y = -0 0 o 1]

F;_éa Patal  Oei vahieos .
LGo=-L5 v wvs e = fxr o xf!

o o

?T‘f ﬁ(-y- x,(x"‘+ x;'?h* ,"[* }js ‘%‘;: i(‘#*l(‘ll* Xa"?h* /* 5‘75

< p [l ™ 2] G i) o (R xS 2

= LGy - sy ™] =3 (o)™

= ol [y -302] i Bpnmte

= ‘l"‘(‘.l ¥ x;‘)‘s“(x;- Lx,’) e ¢
e P Zx2-%s)
% ('5
ff’; =0 (ia) %c;_: =0 (kwa)

—
%= [ P*(Zx:-s-xn) o Bexxw 4 ]

0u(x) Priay Dertvanes:
As 020 e % =%y, We Con Swp %, ad X3
C\'Dm e resolr of “‘/6)‘ b osbe bor ‘““/ax.

‘i&,[ TSN g(lx:‘s—x.‘) o]

9%

P T T O O S O S S P P
*
o
.
o
0 §
2 o \ o 1 :
4 2 2
. - wlzxt-x) ° Bpxxs ° i
= . A )_ - -5 3 °
o .. %) = d B
3 o o o | §
.
4 %, % 2 2
3 ) X -% .
: Spn o 2x - ) o :
3 .
o
o .
’.0..0..0..0..0..0..0.......................................O:

33



Rnd Trp)\— Jacobian BCK)'-

seccsccccccccscns,
: .
. N
: .
F.O= % . o o)
_ _PAX% . P ° o
B(x):ﬁ‘: = "10\’ %*““""‘ whe =A% +x} s BO= 3
.
;3()&3-" Xy 8 9
N
‘Fq(x) = - P.:" Y u i, J o .
g .
eecccccccccccccce’®

Rnd Dotrone Jacsban 1) :

seccsccccccccscns,
: .

. N

: .

f.6O= % . o o)

- x " ¢ - .

I"(.\()z‘)«:;t = (0= —%‘-“"M A Moo= ° .
2 X . o .

g;(x) y : o

{l.‘(x\z - '*:.‘ vu v, 9 o Q

. N

: .

M o

Fd  Measormat Tucobon R()=CGO
‘D':Lt)

yie>= Pl | + i
d

wee:  pilo= ] X -y +Lie-vi@d1™’

[x—%6@3]- [ - %63+ Dite>-viws1 - [vea - ¥ i8]
Pl

piler =

A A [ T H A2
Plr = tar (i)

e i o i

X, Xy s ddy

— b 8b. b %y
aR _ |36 o8 2b %
\-\(x)=—'“ = |3x 3 s v
3 34 0

o W % ox

i - 1
Find  Rung Tsen 3w pr=1 [xto- Wi@) e [va- M@ T?

dpé e S\ g . . .
T%=7([“\“‘>‘] "[*s“f;]) v (CR T R ‘lé(eﬂl\ : As ot s SymeMical @omr Y, S, 1
H ¥ e yi
- 2 [x (o ~xiw]
- 1 : i _Yé
H [x,er-%E@)* +[va- Vi1 e S Xl -V ;
; °% \/[x @-xi@]* +[x, - vi©®)*
| v —Rs >
3p¢ %u(d) - %5 3
 VL@-xiE] +[x, - i) | 20 (e o e L)
1 2

Tﬁ%‘,[*’j“ , 0 BB }

34



3
Frd QMF Ruve  Jacobion aTP'

Py =

Fd Debol Dsivahes of oo (22):

Dx - w6 3] [xeey - i)+ vy -¥itsd- Do - 45 [ xo -] [ va —sE@dsl vy v [ % -vi] o
A b e Do e 0% ey +[vs -vi@ T o
dedgrate h_’_j

%) ;3. ([X&)—x‘;(eﬂ-[i&)— KT+ [16y- ¥ [Nea - ﬁftéﬂ) R
“ %) &([xm-xim].[im-iic«ﬂ«[w)-v;m.lwn- v‘,‘m]) = X -xiey
%) Ti)",([m)—xiuﬂ-[iln -3+ D -viwT- [N - v n]) = V- 30

. Xq) ﬁ—,‘([)‘&)—xgﬁﬂ-[i(t)— $E@Ir [y - ¥ [N - ‘if(k\]) = - it

F\fﬁ Pocvol  Deivahes oF dm....;mw(%::) (Cw P"‘“MH>=

3 ol [w-wi] 3 e s %% .
e I da 3 dugy P Ny Tty
: 9pi
Fra S22 |
) _ b3S - a-dp - p-[im—iiuf]_a, _[1;—_!,1 ) [i(&)-i;(eﬂ ) a[x(e)—x;(hl
e d p* (4 0?
il _ [Xﬂﬁs—ii(eﬂ _ ol x - %i(6)]
3% e 03

3 2P
Fra T'::“
A b it - a2 _

p[xe> - ¥@®] —a-[o]

a2 -

dp. &

e

X&) = xi&)

A%y

F\fdgz“':

-l -¥i) - a2 [jer-yiw)]

P

d*3 X

dpue) _ [we>-5i@]

AXs

—1-T
Fod S5

- “[Xa‘gg]
P e

- “[Xa“ié]
P p®

9P _ el plhe-we] - sl

A%y W

P

0pule) _ BE)-¥EE®

%

= O.[X.(t) - Xi(ﬁ]

P

X = %46 Bul>-380]_a[xa-3i]

02

dp: [ [xor-5 3]

I

Whee o =

Yalld = yi(e)}

’ P

P P .

[ s —s3]-L e -3l vy -¥itsT- [ vy - 28]

35



b
Find  Elembion An%le Jocsblan —2—;=
o/ %@ - YE
$:= +on (x.m-gm)

As & =H(x x3) wo @ 1%, ¥a3: .
9%

o~ = O T - O
Y
Fnd 3y ¢
ddi _ | L9 [ -vie
3%, | ( x,(.e)“fg(k))z 4x, \ M@ - %e
X, () - %® - .
o
3 ( ¥ - vé(n) =L% M - xé(n)]-[(‘,m— Vi) 2 <))
dx \\@-we) ( )Sn:fi,“‘)‘
; . ¥a- v
R
ddc | Lo Yi()) LJ
3%, | (M)z (%, - iy
X, () - %®»
dP; _ -(%s - Vi)
I, (%, -x3@Y + (% -Yi)
I ~(%a- %)
I, et
Y
Frd ax ¢
dd: _ | L3 [xe-vie
Xy ( %36 - vﬁ(n)z 3%y \ W@ -¥E
I+ Ko %6
J @ -V \_ 1 T }
dxy \ M- OG- %
d 9 - | . |
Xy ( X3 - vém)‘ ¥, @) - %o
|+ X%, (&) - %®
dd¢ _ | L MO
ANy ( X3 - vi(n)’ (M- ey
I+ o=
9P _ % @) - ¥

LREN (x, - xi@Y + (x5 - Yiteo)

ddc _ - %
d %3 P

24& =[ -(u,-zue\) : o : i.(n—;xé(n - - ]
% e. (3

36



dp: o A dpe

%, éfa é:in ¥y

= ah _ (36 o 24 %

COO =W =57 = [ox 36 o 3xa
3 30 30

A%, ¥z %3 Xy

A X

_ A% _aax o% AY: _ a Y,
<) = [A%i _adx o AN _ A
RO P [ P: [ e?

:

DX = X-XE(E)= %~ %@
DX = X -XEE) = %~ H®
DY =¥ =viE)= % YE®
A¥p =¥ -y i@)= %Y@

a DY b%; + oYY

P =Hax® + av*

©0000000000000000000000000000000000000 00

Conbnvas Time:

X =Al, R+ Bl - &+ e

G

€| -+ B, cwe +

Yoom

<\

o P o Lo
- Al2x2-x8) 1 Bpowxs
Al = ¢S - [ : °
o 1O (o] |
eyt ol pmladxd) o
T
where = AXE + X2
o o o o o o
3 = | N o o
Bl)= M= O ()=
[ o o
o o o O

IS o AY; o
Pe (3
= I _ A% _aax o% AY: _ a oy, AV
CeO = R(x) = |A% _adx, L% - . AV
Co=RE0 = |50 - D .

37

&Y

©000000000000000000000000000000000000000000000000000000000

©000000000000000000000000000000000000000000000000000000000

(o)

P:

©00000000000000000000000000000000000000

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Whee 2 AX; = X -XiE)= x,-¥®

DY = X -XE@)= %, %®

BY: =¥ -¥EE)= % YE®

AV =¥ -y i@)= %~ YE®
A = AV L% +o%AY;

P =Hax% + av?



Dsuete. Tme (Eule Apﬁooc\rﬁ

Owen the go\l\ouums CT sysiom:

Sx(@)=A, Sx@) + By @)y My &)

We  Cen C(;Pr*ox€ma\: e denvoVoe with :

SA*“A—A SRy = Ay S%, * B S, + M O
-
L
SXM—\ = Sy AT-A S¥ FAT B, ¥ AT T By
W—\—J ‘__'___ \———'.'
Gy <,
(T+at-A0 8%
FK
Mcm’c. =
St = P Bxic+ B S s oy
Y« = i:lu‘ Sxi
Whet.
° ! o 1)
=4 2x2-%a) i : %, '
F.= | T srar- Y ’rs"‘)ioi pre i
° - o f
_31*::'_“ Lol lx";x.‘) o
f
Where r=4x‘l+x:'
o o
G, = &7 S N SN O
o o
o
DX o) A, o Wret t AX; = X -XEE)= X~ ¥E@®
e [ DY = X -Yi@)= - Y@
F\(X): A_;U_& ox A_"lx_ a Y AY: A\’£=Y“Vi(t)=\(;—¥§(é)
[2 p2 P: [ 2 P: DV =Y =y @)= %~ Vi
AY; AN Q= Ao +avel:
Tt 0 e o
L ’ P ={avm v

38



5.2 Appendix B: MATLAB Code

39



File: A jacobian.m

function A = A_jacobian(x, mu)

%A_JACOBIAN Continuous-time dynamics Jacobian A(x) = df/dx.
%Inputs:

% x - 4x1 state [X; Xdot; Y; Ydot]

% mu - gravitational parameter

%0utput:
% A - 4x4 Jacobian matrix evaluated at x

%Pull out and calculate commonly used variables

x1 = x(1);
x3 = x(3);
r = sqrt(x1~2 + x372);
r5 = r°5;

%Calculate Matrix Inputs
A_11 = mu * (2 *x x1°2 - x372) / r5;

A_13 = 3 * mu * x1 * x3 / r5;
A_31 = 3 *mu * x1 * x3 / r5;
A_33 = mu * (2 * x372 - x1°2) / r5;

%Form Output Matrix

A=1[0 1 0 0;
A_11 O A_13 0;
0 0 0 1;
A_31 0 A_33 0];

end

Listing 1: Code for A _jacobian.m

File: DTLinearized KF.m

function [P_plus, x_hat_plus, P_minus, x_hat_minus, e_y, S] = DTLinearizedKF(P_O, mu_0, N, Dt, Q, R, <
ydata,params,t_0)
mu = params.mu;

P_plus = P_0;

x_hat_plus = mu_0’;

dx_hat_plus = mu_0’ - getXNom(t_0)’;

P_minus = [];

x_hat_minus = [];

dx_hat_minus = [];
t = zeros(N + 1);
t(1) = t_0;

n = size(mu_0,2);

ydata = cellfun(@(ydata_k) reshape(ydata_k,4,[]), ydata, ’UniformQutput’,false);

y = cellfun(@(ydata_k) ydata_k(1:3,:), ydata, ’UniformQutput’,false);

visible_stations = cellfun(@(ydata_k) ydata_k(4,:),ydata, ’UniformQutput’,false);

% Clean visible_stations by removing NaN entries

visible_stations = cellfun(@(x) x("isnan(x)), visible_stations, ’UniformOutput’, false);

e_y = cell(1, N); % Innovation vector dy_k at each step
S = cell(1l, N); 7 Innovation covariance matrix S_k at each step
for k = 1:N

i=k+1;

i_prev =1 - 1;

t_k_prev = t(i-1);

t_k = t_k_prev + Dt;

t(i) = t_k;

%% Eulerized DT Jacobians
x_nom_k_prev = getXNom(t_k_prev)’;
[, =, 7, 7, Gamma_k, F_k, G_k, ~, "] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,1,mu);
Omega_k = Dt*Gamma_k;
%getDTLinearizedMatrices ()

%% Prediction Step

40



% <include>kalmanFilterPrediction.m</include>

P_plus_k_prev = P_plus(:,:,i_prev);

dx_hat_plus_k_prev = dx_hat_plus(:,i_prev);

u = zeros(2,1); % TODO: Do we need u data?

[dx_hat_minus_k, P_minus_k] = DTLinearizedKFPrediction(...
dx_hat_plus_k_prev,P_plus_k_prev,
F_k,G_k,Omega_k,Q,u);

P_minus(:,:,k) = P_minus_k;

dx_hat_minus(:,k) = dx_hat_minus_k;

x_nom_k = getXNom(t_k)’;

x_hat_minus_k = dx_hat_minus_k + x_nom_k;

%% Correction Step

Hk = [1;

visible_stations_k = visible_stations{k};

visible_stations_nom_k = [];

y_nom_k = [];

dy_k = [1;

y_k = y{k};

y_k = reshape(y_k,3,[1);

N_visible_stations_k = size(visible_stations_k,2);
for i_meas = 1:N_visible_stations_k
y_k_ i = y_k(:,i_meas);
stationID = visible_stations_k(i_meas);
if (stationID>0)
-, ~, ", ~,~,~, ~, Hk_i, "] = getLinearizedMatrices(x_nom_k,t_k,Dt,stationID,mu);
[y_nom_k_i, ~] = GetStationMeasurement(x_nom_k, t_k, stationID);

else
% TODO: Check if this is correct handling for when no station
% sees the spacecraft
Hk_i= [];
y_nom_k_i = zeros(3,1);
y_k_i = zeros(3,1);
end
% If we have a measurement, assume it’s visible.

dy_k_i = y_k_i - y_nom_k_i;
%% Correct angle perturbation for quadrant
phi_k_ i = y_k_i(3);
phi_k_norm_i = y_nom_k_i(3);
dphi_k_i = phi_k_i - phi_k_norm_i;
% Bound the perturbation to [-pi/2
if dphi_k_i > pi
dphi_k_i = dphi_k_i - 2%pi;
end
if dphi_k_i < -pi
dphi_k_i = dphi_k_i + 2%pi;
end
dy_k_i(3) = dphi_k_i;
dy_k = [dy_k; dy_k_i;];
y_nom_k = [y_nom_k; y_nom_k_i;];
H.k = [H_k; H_k_i;];
end
[p_k,” ] = size(H_k);
% TODO: track measurements by statiom...
measurementNotAvailable = (p_k == 0);
if measurementNotAvailable ), measurements not available
dx_hat_plus_k = dx_hat_minus_k;
P_plus_k = P_minus_k;
e_y_k = {};
S_k = {};
else % measurements available
R_diag = mat2cell(repmat(R,1,N_visible_stations_k),3,3*ones(1,N_visible_stations_k));
R_k = blkdiag(R_diag{:});

[e_y_k, dx_hat_plus_k, P_plus_k,S_k,”] = DTLinearizedKFCorrection(
dx_hat_minus_k,P_minus_k,dy_k,

41



102 H_k,R_k);

103 end

104 e_y{k} = e_y_k; J Store current innovation vector

105 S{k} = S_k; % Store current innovation covariance matrix
106 P_plus(:,:,i) = P_plus_k;

107 dx_hat_plus(:,i) = dx_hat_plus_k;

108 x_hat_plus_k = dx_hat_plus_k + x_nom_k;

109 x_hat_plus(:,i) = x_hat_plus_k;

110
111 || end

112 || x_hat_plus = x_hat_plus’;
113 || x_hat_minus = x_hat_minus’;
114 || end

Listing 2: Code for DTLinearizedKF.m

File: DTLinearizedKFCorrection.m

i || function [e_y_k, x_hat_plus_k, P_plus_k,S_k,y_hat_minus_k] = DTLinearizedKFCorrection(...
2 x_hat_minus_k, P_minus_k, y_k,...

3 H_k,R)

i || y_hat_minus_k = H_k*x_hat_minus_k;

5 ||e_y_k = y_k - y_hat_minus_k;

7 ||N_visible_stations_k = numel(y_k)/3;

s ||for i_phi_k = 3*(1:N_visible_stations_k)

0 e_phi_k = e_y_k(i_phi_k);

10 % Bound the perturbation to [-pi/2

11 if e_phi_k > pi

12 e_phi_k = e_phi_k - 2xpi;

13 end

14 if e_phi_k < —pi

15 e_phi_k = e_phi_k + 2xpi;

16 end

17 e_y_k(i_phi_k) = e_phi_k;

12 || end

19 || S_k = H_k*P_minus_k*H_k’ + R;

20 ||K_k = (P_minus_k*H_k’)/S_k;

21 || x_hat_plus_k = x_hat_minus_k + K_k*(e_y_k);
22 || [n,”] = size(x_hat_minus_k);

23 ||P_plus_k = (eye(n) - K_k*H_k)*P_minus_k*(eye(n) - K_k*H_k)’+K_k*R*K_k’;

25 || end

Listing 3: Code for DTLinearizedKFCorrection.m

File: DTLinearized KFPrediction.m

i || function [x_hat_minus_k, P_minus_k] = DTLinearizedKFPrediction(...
2 x_hat_plus_k_prev, P_plus_k_prev,
3 F_k, G_k, Omega_k, Q_k, u_k)

5 || x_hat_minus_k = F_k*x_hat_plus_k_prev + G_k*u_k;
6 ||P_minus_k = F_k*P_plus_k_prev*F_k’ + Omega_k*Q_k*Omega_k’;
7 || end

Listing 4: Code for DTLinearizedKFPrediction.m

File: DTMeasurementSimulationStep.m

i || function [y_k] = DTMeasurementSimulationStep(x_k_prev, y_k_prev,
2 H, R)

3 || if y_k = []

4 || end

Listing 5: Code for DTMeasurementSimulationStep.m

42



File: DTSimulation.m

function outputs = DTSimulation(Q,R,dx_0,T,Dt,params)
%% Config
mu = params.mu;
N_stations = 12;
% N_stations = 2;
N = T/Dt;
t = 0:Dt:T;
N_x = numel(t);
% N_y = N_x - 1;
N_y = N_x;
n = numel(dx_0);
x_nom_0 = getXNom(t(1))?;
x_0 = dx_0 + x_nom_0O;
outputs.dx = zeros(N_x,n);

outputs.x = zeros(N_x,n);
outputs.x_nom = zeros(N_x,n);
outputs.y = cell(N_y,1);

1]

outputs cell(N_y,1);

outputs =t

outputs.dx(1,:) = dx_0;

outputs.x(1,:) = x_0;
outputs.x_nom(1l,:) = x_nom_0;
outputs.visible_stations = cell(N_y,1);
%% State Simulation

.X
.X
-y

outputs.dy = cell(N_y,1);
H
.t

for k = 1:N

%% Get Parameters

i=k+1; % x(k =0) ==x(1=1), x(k = 1) ==x(1 = 2),
hix =k +1; % x(k = 0) == x(i = 0), x(k = 0

hily =k; %yk=1) ==y@E = 1),

dx_k_prev = outputs.dx(i-1,:)’;

t_k = t(i);

x_nom_k_prev = outputs.x_nom(i-1,:)’;
Q_k = Q; ’% TODO: Update
R_k = R; % TODO: Update
%% State Simulation Step
-, -, -, ~, 7, FXk, 7, 7, 7] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,1,mu);
% Process Noise
if all(Q_k == 0)
w_k = zeros(size(dx_k_prev));

else
S_w_k = chol(Q_k,’lower’); % cholesky decomposition of Q_k
q_w = randn(n,1); % random number
w_k = S_w_k*q_w; % process noise

end

dx_k = F_kxdx_k_prev + w_k; % propogate state x(k-1) -> x(k)
x_nom_k = getXNom(t_k)’;
x_k = dx_k + x_nom_k;
%% Measurement Simulation Step
Hk = [1;
visible_stations_k = [];
visible_stations_nom_k
y_nom_k = [];
for stationID = 1:N_stations
-, -, -, ~, ", , 7, H.k_i, 7] = getLinearizedMatrices(x_nom_k_prev,t_k,Dt,stationID,mu);
[y_nom_k_i, ~] = GetStationMeasurement(x_nom_k, t_k, stationID);
[, is_visible] = GetStationMeasurement(x_k, t_k, stationID);
if is_visible
y_nom_k = [y_nom_k; y_nom_k_i;];
visible_stations_k = [visible_stations_k stationID];
Hk = [H k; Hk_i;];

o~

[1;

end
end
[p_k,” ] = size(H_k);
measurementNotAvailable = (p_k ~= numel(y_nom_k)) || (p_k == 0);

if measurementNotAvailable ), measurements not available

43



67 y .k = [1;

68 else % measurements available

69 mu_dy_k = H_k*dx_k;

70 if all(Q_k == 0)

71 v_k = zeros(size(mu_dy_k));

72 else

73 [p,”] = size(H_k);

74 S_v = chol(R_k,’lower’); 7% cholesky decomposition of R_k
75 q_v = randn(p,1); % random number
76 v_k = S_v*q_v; % measurement noise
77 end

78 dy_k = mu_dy_k + v_k;

79 y_k = y_nom_k + dy_k;

80 end

81 %% Store Updated Parameters

82 outputs.dx(i,:) = dx_k’;

83 outputs.x_nom(i,:) = x_nom_k’;

84 outputs.x(i,:) = x_k’;

85 outputs.y_nom{i} = y_nom_k’;

86 outputs.dy{i} = dy_k’;

87 outputs.y{i} = y_k’;

88 outputs.H{i} = H_k;

89 outputs.visible_stations{i} = visible_stations_k;
90 end

91 || end

Listing 6: Code for DTSimulation.m

File: EKF Orbit.m

i || function [xhat_hist, P_hist, innov_cell, S_cell, visible_ids_cell, yhat_cell] = EKF_Orbit(ydata, tvec, <
x0_hat, PO, Q_matrix, R_matrix, mu, R_E, omega_E)
2> || ’Runs an Extended Kalman Filter for a single measurement sequence

s || %

4 || %Inputs

5||% ydata - 1xN cell array of measurements. ydata{i} = m_i x 1 measurement

A associated with the measurement at time tvec(i). m_i = 3 * (# visible stations)
7 ||%h tvec - 1xN double time vector associated with the time of each measurement [seconds]
s ||% xO_hat - 4x1 initial state estimate

o ||% PO - 4x4 initial covariance

10 || % Qtrue - 2x2 process noise covariance matrix applied to acceleration disturbances

11 || % Rtrue - 3x3 measurement noise covariance matrix for each station

12 | % mu - Earth gravitational parameter [km~3/s"2]

131|% R_E - Earth radius [km]

14 || % omega_E - Earth rotation rate [rad/s]

15 n/,.

16 || %0utputs

17 || % xhat_hist - 4xN double matrix of posterior state estimates

18 || % P_hist - 4x4xN double matrix of posterior covariance matrices

19 || % innov_cell - 1xN cell array of innovation vectors v_k = y_k - yhat_k

20 || % S_cell - 1xN cell array of innovation covariance matrices S_k

21 || % visible_ids_cell - 1xN cell array of visible station indices at each time step

22 || % yhat_cell - 1xN cell array of predicted measurement vectors h(xhat_minus)

24 || hGet measurement length
25 [|N = length(tvec);
26 || numStates = 4;

28 || iPreallocate output variables

20 || xhat_hist = zeros(numStates,N);

30 || P_hist = zeros(numStates,numStates,N);
31 || innov_cell = cell(1,N);

32 || S_cell = cell(1,N);

33 || visible_ids_cell = cell(1,N);

34 || yhat_cell = cell(1,N);

36 || %#Initialize state estimate and covariance for time tvec(1)

44



37 || xhat_plus = xO_hat;
3s || P_plus = PO;

10 || 4Add to output arrays

11 || xhat_hist(:,1) = xhat_plus;
12 ||P_hist(:,:,1) = P_plus;

i3 || innov_cell{1} = [1;

44 S_cell{l} = [],

15 || visible_ids_cell{1} = [];
w6 || yhat_cell{1} = [J;

15 || #Define Gamma (constant)
19 || gamma = [0 O;

50 1 0;

51 0 0;

52 0 1]1;

54 || hAssume input zero at all times
55 [lu_k = [0; 0];

57 || hiExtended Kalman Filter loop
ss || for k = 1:(N-1)

59 %Time step

60 dT = tvec(k+1) - tvec(k);

62 % Now propagate using nonlinear dynamics
63 xhat_minus = propagate_orbit(xhat_plus, u_k, dT, mu);

65 %Time update / prediction

66 A_tilde_k = A_jacobian(xhat_plus, mu);

67 F_tilde_k = eye(numStates) + dT*A_tilde_k;
68 Omega_tilde_k = dT * gamma;

70 P_minus = F_tilde_k*P_plus*F_tilde_k’ + Omega_tilde_k * Q_matrix * Omega_tilde_k’;

72 %Measurement data at time t_{k+1}
73 measurement = ydata{k+1};

75 %#If no measurements, prediction only
76 if isempty(measurement)

77 xhat_plus = xhat_minus;

78 P_plus = P_minus;

79 xhat_hist(:,k+1) = xhat_plus;
80 P_hist(:,:,k+1) = P_plus;

81 innov_cell{k+1} = [];

82 S_cell{k+1} = [];

83 visible_ids_cell{k+1} = [1;
84 yhat_cell{k+1} = [1;

85 continue

86 end

88 %Extract station IDs and number of visible stations
89 station_ids = measurement(4,:)’;

90 n_vis = numel(station_ids);

92 %Build measurement vector y_meas by stacking [rho; rho_dot; angle] columns
93 y_meas = reshape(measurement(1:3,:),3*n_vis,1);

95 %Measurement update / correction step
96 t_kl1 = tvec(k+1);
97 [yhat_minus, H_tilde_k, ~] = H_jacobian(xhat_minus, t_k1, station_ids, R_E, omega_E);

99 %Force predicted measurement to column
100 yhat_minus = yhat_minus(:);

101
102 %Store predicted measurement and station IDs
103 yhat_cell{k+1} = yhat_minus;

104 visible_ids_cell{k+1} = station_ids;

105

45



%Form measurement noise covariance for n_vis stations
R_k = R_matrix;
for j = 2:n_vis
R_k = blkdiag(R_k,R_matrix);
end

if(k == 21 || k == 22)
abc = 1;
end

%Innovation
e_tilde_k = y_meas - yhat_minus;

%Wrap innovations to [-pi, pil
for j = 1:n_vis
angle_idx = 3%j; % Every 3rd element is an angle
e_tilde_k(angle_idx) = wrapToPi(e_tilde_k(angle_idx));
end

%Innovation covariance
S_k = H_tilde_k*P_minus*H_tilde_k’ + R_k;

%Kalman gain
K_tilde_k = P_minus*H_tilde_k’/S_k;

%State update
xhat_plus = xhat_minus + K_tilde_k*e_tilde_k;

%Covariance update
P_plus = (eye(numStates) - K_tilde_k*H_tilde_k)*P_minus;

%Store results
xhat_hist(:,k+1) = xhat_plus;
P_hist(:,:,k+1) = P_plus;
innov_cell{k+1} e_tilde_k;
S_cell{k+1} = S_k;

end

end

Listing 7: Code for EKF _Orbit.m

File: Final Project Main.m

%% Part 1 Problem A, B
Final_Project_Part_1_ab

%% Part 1 Problem C
Final_Project_Part_1_c

% TODO: Simulation Comparison

%% PArt II Problem 4 a
Final_Project_Part_2_Problem_4_part_a
%% PArt II Problem 5 a

% STANDALONE
%Final_Project_Part_2_Problem_5_part_a
%% PArt II Problem 4/5 b,c

% STANDALONE

%RunTMT _rmh
%% PArt II Problem 6
Final_Project_Part_2_Problem_6

Listing 8: Code for Final Project Main.m

File: Final Project Part 1 ab.m

%clear; clc; close all;

46



%Load in constants

mu = 398600; %Gravitational Constant [km~3/s~2]

Re = 6378; %Earth radius [km]

omegaE = (2*pi) / 86400; Earth rotational rate [rad/s]

%Nominal Orbital Parameters

r0 = Re + 300; %300 km orbit radius [km]

X0 = r0; %Initial X Position [km]

YO = 0; %Initial Y Position [km]

X0_dot = 0; %Initial X Velocity [km/s]

YO_dot = r0 * sqrt(mu / r0~3); %Initial Y Velocity [km/s]

x_nom = [X0; XO_dot; YO; YO_dot]; /Nominal state (used as linearization point)

%Define Disturbances (process noise standard deviations)
sigma_w = [0; 0]; %[w_tilde_1; w_tilde_2]

%Nominal Input (No Forcing)
u_nom = [0; 0];

%Simulation Constants
delta_t = 10; Y%[seconds]
time = O;

stationID = 1;

%Get CT and DT system matrices at linearization point

[A, B, C, D, Gamma, F, G, H, M] = getLinearizedMatrices(x_nom, time, delta_t, stationID, mu);

Listing 9: Code for Final Project Part 1 ab.m

File: Final Project Part 1 c.m

%% Simulation Config

% Dummy Variables % TODO: Remove
n = numel (x_nom);

p = 2; % TODO: Vary this.
Q = zeros(n);
R
r
T

= zeros(p);

= Re + 300;

= 2%pi*sqrt(r~3/mu) ;
Dt = 10;
T = 1400%Dt;

params.mu = mu;
dX0 = 0.001*x_nom; % TODO: Good IC

dxo = [0,0.075,0,-0.021];

%% DT Simulation

dt_LTI_outputs = DTSimulation(Q,R,dX0’,T,delta_t,params);
%% Plot

%% DT Simulated States and Nominal States vs. Time
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
sgtitle("DT Simulated States and Nominal States vs. Time")

%% Sanity Check on Visibility
figure; hold on;

plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x)
plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)

plot(Re*sin(0:0.01: (2%pi)) ,Re*cos(0:0.01:(2%pi)))
ifoo = 251;
for stationID = 1:12

[X_1_tfoo, Y_1_tfoo, =, 7, "] = GetGroundStationState(stationID, dt_LTI_outputs.t(ifoo));
Scatter(X_l_tfoo,Y_l_tfoo,’filled’,"HandleVisibility","off")

text (X_1_tfoo,Y_1_tfoo,num2str(stationID))
end
x_tfoo = dt_LTI_outputs.x(ifoo,:);

47



98

99

100

101

102

103

scatter(x_tfoo(1),x_tfoo(3))
sgtitle("DT Simulated States and Nominal States (Cartesian)")

%% DT Simulated State Perturbations vs. Time"

figure; hold on;
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.dx)
sgtitle("DT Simulated State Perturbations vs. Time")

%% DT Simulated Measurements vs. Time

figure; hold on;
plotStationMeasurements(dt_LTI_outputs)
sgtitle("DT Simulated Measurements vs. Time")

%% Define variables and ICs

r_0 = sqrt(667872);

mu = 398600; 7, Gravitational parameter for Earth in km~3/s"2
x_IC = [6678; 0; 0; r_0 * sqrt(mu/r_0"-3)];

x_0O_perturb = [0; 0.075; 0; -0.021];

x_0 = x_IC + x_O_perturb;

Dt = 10;

T = 1400%10; 7 1400 steps, each 10s

%% Simulate states
outputs = NonlinearSimulation(x_0, T, Dt);

%% Plot states over time
t = 0:Dt:T;
data_tip_indices = [1, 136, 402, 726, 1098, 1401];

figure;

sgtitle(’States vs. Time, Nonlinear Dynamics simulation’);
subplot(4,1,1);

p = plot(t, outputs.x(:,1));

xlabel(’Time (s)’);

ylabel(’X (km)’);

ylim([-1e4, 1e4l);

% Create the Data Tips
p-DataTipTemplate.DataTipRows(2) .Format = *7.0f’;
for i = 1:length(data_tip_indices)

datatip(p, ’Datalndex’, data_tip_indices(i));
end

subplot(4,1,2);

p = plot(t, outputs.x(:,2));
xlabel(’Time (s)’);

ylabel (’X_{dot} (km/s)’);

% Create the Data Tips
p-DataTipTemplate.DataTipRows(2) .Format = ’7,.3f7;
for i = 1:length(data_tip_indices)

datatip(p, ’Datalndex’, data_tip_indices(i));
end

subplot(4,1,3);

p = plot(t, outputs.x(:,3));
xlabel(°Time (s)’);
ylabel(’Y (km)’);
ylim([-1e4, 1e4l);

% Create the Data Tips
p.DataTipTemplate.DataTipRows(2) .Format = ’7.0f’;
for i = 1:length(data_tip_indices)

datatip(p, ’Datalndex’, data_tip_indices(i));
end

subplot(4,1,4);
p = plot(t, outputs.x(:,4));

48



xlabel(’Time (s)’);
ylabel(’Y_{dot} (km/s)’);

% Create the Data Tips
p.DataTipTemplate.DataTipRows(2) .Format = ’%.3f’;
for i = 1:length(data_tip_indices)

datatip(p, ’Datalndex’, data_tip_indices(i));
end

%% Plot Nonlinear Measurements vs. Time

outputs.t = t;

figure; hold on;

plotStationMeasurements (outputs)

sgtitle("Nonlinear Simulated Measurements vs. Time")

%% Sanity Check on Visibility

figure; hold on;
plotSimulationStatesCartesian(outputs.t,outputs.x)
plot(Re*sin(0:0.01: (2*pi)) ,Re*cos(0:0.01: (2%pi)))

ifoo = 1106;
for stationID = 1:12
[X_1_tfoo, Y_1_tfoo, ~, 7, ~] = GetGroundStationState(stationID, outputs.t(ifoo));

scatter(X_l_tfoo,Y_1_tfoo,’filled’,"HandleVisibility","off")
text (X_1_tfoo,Y_1_tfoo,num2str(stationID))
end
x_tfoo = outputs.x(ifoo,:);
scatter (x_tfoo(1) ,x_tfoo(3))
text (x_tfoo(1),x_tfoo(3),[’t = ’ num2str(outputs.t(ifoo))])
sgtitle("DT Simulated States and Nominal States (Cartesian)")

%% Simulation Comparison

figure; hold on;

sgtitle("DT Linearized vs. Nonlinear Simulation States")
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
plotSimulationStates(t,outputs.x);

legend("DT Linearized","Nonlinear")

figure; hold on;

sgtitle("DT Linearized States error vs. Nonlinear Simulation States")
outputs.error = dt_LTI_outputs.x - outputs.x;
plotSimulationStates(outputs.t,outputs.error);

Listing 10: Code for Final Project Part 1 c.m

File: Final Project Part 2 Problem 4 part a.m

%% TODO: A "typical" sim run.

mu_0 = getXNom(O) ;

N = 1400;

n = 4;

pos_variance = le-6;

vel_variance = le-5;

P_O0 = diag([pos_variance, vel_variance, pos_variance, vel_variance]);
Q_KF = 1le-10*eye(2); 7% TODO: Use a proper guess

%Q = Q - le-12*%ones(2) + le-12*eye(2);

params.mu = mu;

T = 1400%Dt;

load(’orbitdeterm_finalproj_KFdata.mat’)
% Euler Approximation for DT Process Noise Covariance
G = [0 O;
1 0;
0 0;
0 11;
% Q_DT = G * Qtrue * G’ * Dt;
% epsilon = le-12;

49



% YRtrue = Rtrue/le6
% % Apply jitter to process noise covariance
% Q_DT = Q_DT + epsilon * eye(n);

t_0 = 0;

S_w = chol(Qtrue, ’lower?’);

S_v = chol(Rtrue, ’lower’);

dX0 = [0.0001,0.005,0.0001,-0.002];

x_0 = mu_0 + dXO0;
outputs = NonlinearSimulationNoisy(x_0,t_0,1400*Dt,Dt,S_w,S_v);

ydata_simulated = convertOutput2Ydata(outputs);
%ydata_simulated = cell(1,N);

JRtrue = Rtrue/1le6

%% Plot Nonlinear Measurements vs. Time

t = Dt:Dt:T;

outputs.t = t;

figure; hold on;

plotStationMeasurements (outputs)

sgtitle("Nonlinear Simulated Measurements vs. Time")

%% Run LKF
[P_plus, x_hat_plus, P_minus, x_hat_minus] = <«
DTLinearizedKF (P_O,mu_0,N,Dt,Q_KF,Rtrue,ydata_simulated,params,t_0);

[sigma_x_hat_plus, ~] = getSigmas(n, N, P_plus, P_minus);
e_x_hat_plus = x_hat_plus(2:end,:) - outputs.x(2:end,:);

%% Plot

figure; hold on;
plotSimulationStatesCartesian(outputs.t,outputs.x)
plotSimulationStatesCartesian(t(2:end) ,x_hat_plus(2:end,:));
t = 0:Dt:T;
figure; hold on;
sgtitle("DT Linearized Kalman Filter");
plotSimulationStates(t(2:end) ,outputs.x(2:end,:));
plotSimulationStates(t(2:end) ,x_hat_plus(2:end,:));
plotSimulationStates(t(2:end) ,x_hat_plus(2:end,:)+sigma_x_hat_plus);
plotSimulationStates(t(2:end) ,x_hat_plus(2:end,:)-sigma_x_hat_plus);
for subplot_i = 1:n

subplot(n,1,subplot_i); hold on;

legend ("$x$","$+2\x$", "$+2\sigma$" ,"$-2\sigma$","Location", "eastoutside","Interpreter", ’latex’);
end

figure; hold on;
sgtitle("DT Linearized Kalman Filter Error");
plotSimulationStates(t(2:end),e_x_hat_plus);
plotSimulationStates(t(2:end),2*sigma_x_hat_plus);
plotSimulationStates(t(2:end),-2*sigma_x_hat_plus);
for subplot_i = 1:n
subplot(n,1,subplot_i); hold on;
legend("e","+2\sigma","-2\sigma","Location","eastoutside");
end

%/ Helper Functions
% TODO: Move to common?

function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)
sigma_2_x_hat_plus = zeros(n,N);
sigma_2_x_hat_minus = zeros(n,N);
for k = 1:N
sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
end
sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;

50



~“end

Listing 11: Code for Final Project Part 2 Problem 4 part a.m

File: Final Project Part 2 Problem 5 part a.m

%Clear workspace
clear; clc; close all;

%Load in Matlab data file
load(’orbitdeterm_finalproj_KFdata.mat’);

#Define orbital constants

mu = 398600; %km~3/s~2 (Earth gravitational parameter)
R_e = 6378; %km (Earth radius)

omega_E = (2xpi)/86400; %rad/s (Earth rotational rate)

daT = 10; %Sampling interval (seconds)
K = 1400; %Number of time steps
tvec = 0:dT:K*dT; %Data simulation time vector (length K+1)

%Define nominal initial state
r0 = 6678; %300 km altitude orbit

x_nom0 = [r0; 0; 0; rO*sqrt(mu/r0-3)]; %[X_nom, X_dot_nom, Y_nom, Y_dot_nom]

%Define initial desired perturbation

desiredPerturbation = [0.0; 0.0; 0.0; 0.0]; %[delta_X, delta_X_dot, delta_Y, delta_Y_dot]

x_initial = x_nomO + desiredPerturbation; %[X, X_dot, Y, Y_dot]

%Eulerized DT process-noise covariance
Gamma = [0 O;

1 0;

0 0;

0 1]1;

%Apply first-order noise
Q_DT = Gamma * Qtrue * Gamma’ * dT;

%Apply jitter to process noise to ensure positive-definite matrix
Q_DT = Q_DT + le-12 * eye(4);

%Find Cholesky factors for process / measurement noise
S_w = chol(Qtrue, ’lower’); %Process noise (4x4)
% S_w = chol(Qtrue, ’lower’); %Process noise (4x4)

S_v = chol(Rtrue, ’lower’); %Single-station measurement noise (3x3)
%Simulate noisy nonlinear "truth" and convert to y-data format

sim_outputs = NonlinearSimulationNoisy(x_initial,0,K*dT,dT,S_w,S_v);
sim_yData = convertQOutput2Ydata(sim_outputs);

%#Form yData cell array aligned with tvec (index 1 corresponds to t = 0)
yData = cell(1,K+1);
yData{1} = []; %No measurement at t = 0

yData(2:end) = sim_yData(:); %Measurements from t = dT to KxdT

%EKF initial conditions and noise guesses

x0_hat = x_nomO;

sigma_x0 = 10000; Y%Position STD in km

sigma_v0 = 10; %Velocity STD in km/s

P_0 = diag([sigma_x0"2, sigma_v0~2, sigma_x0"2, sigma_v0~2]);
Q_KF = 5%Qtrue; J,Process-noise guess for EKF

%Run Extended Kalman Filter

[xhat_hist,P_hist,innov_cell,S_cell,visible_ids_cell,yhat_cell] = ...

EKF_Orbit (yData,tvec,x0_hat,P_0,Q_KF,Rtrue,mu,R_e,omega_E);

51



62 || hPre-compute true states and 1-sigma standard deviations

63 || N = numel (tvec);

64 || x_true = sim_outputs.x.’; HadxN

65 || sigma_hist = zeros(4,N);

66 || for k = 1:N

67 sigma_hist(:,k) = sqrt(diag(P_hist(:,:,k)));
6s || end

6o || state_labels = {’X (km)’,’X\_dot (km/s)’,’Y (km)’,’Y\_dot (km/s)’};

71 || %% Plot 1: Ground truth vs EKF estimated state (with 2 bounds)

72 || figure(’Color?,’w’);

73 || tiles = tiledlayout(’flow’,’TileSpacing’,’compact’,’Padding’,’compact’);
72 || title(tiles, ’Ground Truth vs EKF Estimated State’);

76 || AX position

77 || nexttile; hold on;

7s || plot (tvec,x_true(l,:),’k’, LineWidth’,1.2);

70 || plot (tvec,xhat_hist(1,:),’b’,’LineWidth’,1.2);

so || plot(tvec,xhat_hist(1,:) + 2%sigma_hist(1,:),’r--’,’LineWidth’,1);
s1 || plot(tvec,xhat_hist(1,:) - 2xsigma_hist(1l,:),’r--’,’LineWidth’,1);
s2 || ylabel(state_labels{1});

s3 || legend (’True’,’Estimated’,’+2\sigma’,’-2\sigma’, ’Location’, ’best’);
24 || grid on;

s6 || %X velocity

s7 || nexttile; hold on;

ss || plot (tvec,x_true(2,:),’k’,’LineWidth’,1.2);

so || plot (tvec,xhat_hist(2,:),’b’,’LineWidth’,1.2);

90 || plot(tvec,xhat_hist(2,:) + 2xsigma_hist(2,:),’r--’,’LineWidth’,1);
o1 || plot (tvec,xhat_hist(2,:) - 2+*sigma_hist(2,:),’r--’,’LineWidth’,1);
92 || ylabel(state_labels{2});

93 || legend (’True’, ’Estimated’, ’+2\sigma’,’-2\sigma’, ’Location’, ’best’);
o4 || grid on;

96 || %Y position

o7 || nexttile; hold on;

9s || plot (tvec,x_true(3,:),’k’, ’LineWidth’,1.2);

99 || plot (tvec,xhat_hist(3,:),’b’,’LineWidth’,1.2);

100 || plot(tvec,xhat_hist(3,:) + 2*sigma_hist(3,:),’r--’,’LineWidth’,1);
101 || plot(tvec,xhat_hist(3,:) - 2*sigma_hist(3,:),’r--’,’LineWidth’,1);
102 || ylabel(state_labels{3});

103 || Legend (’True’, ’Estimated’, ’+2\sigma’,’-2\sigma’, ’Location’, ’best’);
104 || grid on;

105
106 || AY velocity

107 || nexttile; hold on;

10s || plot(tvec,x_true(4,:),’k’,’LineWidth’,1.2);

100 || plot(tvec,xhat_hist(4,:),’b’,’LineWidth’,1.2);

110 || plot(tvec,xhat_hist(4,:) + 2*sigma_hist(4,:),’r--’,’LineWidth’,1);
111 || plot(tvec,xhat_hist(4,:) - 2*sigma_hist(4,:),’r--’,’LineWidth’,1);
112 || ylabel(state_labels{4});

113 || x1label(?Time (s)?);

114 || legend (’True’, ’Estimated’, ’+2\sigma’,’-2\sigma’,’Location’, ’best’);
115 || grid om;

117 || %Set up for additional comparison plots (matching Part 4 style)
118 || n = 4;

110 || Dt_loc = tvec(2) - tvec(l);

120 || T = tvec(end);

122 || AUse times k = 1..K (skip k = O to match LKF style)
125 || t_plot = tvec(2:end); %1xK

124 || x_true_plot = sim_outputs.x(2:end,:); %Kx4

125 || xhat_plot = xhat_hist(:,2:end)’; %Kx4

127 || iPosterior 1-sigma from P_hist for k = 1..K
125 || K_steps = numel (t_plot);

120 || sigma_x_hat_ekf = zeros(K_steps,n);

130 || for k = 1:K_steps

52



131 sigma_x_hat_ekf (k,:) = sqrt(diag(P_hist(:,:,k+1)))’;
132 end

134 || #Estimation error (estimate - truth)
135 || e_x_hat_ekf = xhat_plot - x_true_plot; %Kx4

137 || %% Plot 2: EKF state estimation error with 2 bounds

138 || figure(’Color?,’w?’);

130 || tiles4 = tiledlayout(4,1,’TileSpacing’,’compact’,’Padding’, ’compact’);
110 || title(tiles4, ’EKF State Estimation Error with \pm 2\sigma Bounds’);

142 || for i = 1:n

143 nexttile; hold on;

144 plot(t_plot,e_x_hat_ekf(:,i),’b’,’LineWidth’,1.2);

145 plot(t_plot, 2*sigma_x_hat_ekf(:,i),’r--’,’LineWidth’,1);
146 plot(t_plot,-2*sigma_x_hat_ekf(:,i),’r--’,’LineWidth’,1);
147 ylabel([’e_{x_’,num2str(i),’}’1);

148 if i == n

149 xlabel (’Time (s)’);

150 end

151

152 % previousID = [];

153 % for j = 1l:numel(innov_cell)

154 A iterationValue = visible_ids_cell{j};

155 %

156 % if ((isempty (previousID) && ~isempty(iterationValue)) || any(previousID ~= iterationValue))
157 A xline(t_plot(j));

158 A previousID = iterationValue;

159 % end

160 % end

161 %

162 % legend(’Error’,’+2\sigma’,’-2\sigma’, ’Location’,’best’);
163 % grid on;

164

165

166

167 || end

168

170 || %% Plot 3: Nonlinear simulated measurements vs time (EKF case)

171 || figure (’Color?,’w?);

172 || tiles2 = tiledlayout(3,1,’TileSpacing’,’compact’,’Padding’, ’compact’);
173 || title(tiles2, ’Nonlinear Simulated Measurements vs Time (EKF)’);

174

175 || t_meas = [1;
176 || rho_meas = [];
177 || rhod_meas = [];

17¢ || phi_meas = [1;

150 || for k = 1:numel(yData)

181 yk = yData{k};

182 if isempty(yk)

183 continue;

184 end

185 n_vis = size(yk,2);

186 t_meas = [t_meas, repmat(tvec(k),1,n_vis)];
187 rho_meas = [rho_meas, yk(1,:)];

188 rhod_meas = [rhod_meas, yk(2,:)];

189 phi_meas = [phi_meas, yk(3,:)];

190 || end

192 || 4Plot H_matrix Y Output values
193 || range_vec = [1;

104 || range_rate_vec = [1;

195 || angle_vec = [1;

106 || time_vec = []1;

105 || times = [0 t_plot];

53



for i = 1:numel(yhat_cell)
disp(i);

iterationValue = yhat_cell{i};
range = []; range_rate = []; angle = [];

%Pull Out Value
if ("isempty(iterationValue))

iterationValue = reshape(iterationValue, 3, []);

range = iterationValue(1l, :);
range_rate = iterationValue(2, :);
angle = iterationValue(3, :);

end

range_vec = [range_vec range(:)’];

range_rate_vec = [range_rate_vec range_rate(:)’];

angle_vec = [angle_vec angle(:)’];

time_vec = [time_vec times(i) * ones(1l, numel(range))];

end

nexttile; hold on;

scatter(t_meas,rho_meas,10,’filled’, ’MarkerFaceColor’,
scatter(time_vec, range_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);

ylabel (’\rho (km)’);
grid on;

nexttile; hold on;

scatter(t_meas,rhod_meas,10,’filled’, ’MarkerFaceColor’,
scatter(time_vec, range_rate_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);

ylabel (’\dot{\rho} (km/s)’);
grid on;

nexttile; hold on;

scatter(t_meas,phi_meas,10,’filled’, ’MarkerFaceColor’, [0, 0, 1]1);
scatter(time_vec, angle_vec, 10, ’filled’, ’MarkerFaceColor’,[1, 0, 0]);

ylabel(’\phi (rad)’);
xlabel (’Time (s)’);
grid on;

%% Plot 4: True vs EKF estimated trajectory in Cartesian coordinates

figure(’Color’,’w’);
hold on;

plotSimulationStatesCartesian(t_plot,x_true_plot);

plotSimulationStatesCartesian(t_plot,xhat_plot);

title(’EKF: True vs Estimated States (Cartesian)?’);

grid on;

Listing 12: Code for Final Project Part 2 Problem 5 part a.m

File: Final Project Part 2 Problem 6.m

load(’orbitdeterm_finalproj_KFdata.mat’)

%% Plot Nonlinear Measurements vs. Time
outputs = convertYdata20utput (ydata,Dt);
% sanitize NalNs
outputs.visible_stations{1} = [];
outputs.y{1} = [J;

figure; hold on;

plotStationMeasurements (outputs)

[0, 0, 11);

[0, 0, 11);



sgtitle("Given Measurements vs. Time")

%% LKF

mu_O = getXNom(O);

N = 1400;

pos_variance = le-6;

vel_variance = le-5;

P_0 = diag([pos_variance, vel_variance, pos_variance, vel_variance]);
Q_KF = 1le-8xeye(2); % TODO: Use a proper guess

% Euler Approximation for DT Process Noise Covariance

G = [0 O;
1 0;
0 0;
0 11;

t_0 = 0;

params.mu = mu;

[P_plus, x_hat_plus, P_minus, x_hat_minus] = DTLinearizedKF(P_O,mu_O0,N,Dt,Q_KF,Rtrue,ydata,params,t_0);
x_hat_plus = x_hat_plus’;

[sigma_x_hat_plus, ~] = getSigmas(n, N, P_plus, P_minus);

%% Plot
t=0:Dt:N*Dt;
figure; hold on;
sgtitle("DT Linearized Kalman Filter");
plotSimulationStates(t(2:end) ,x_hat_plus(:,2:end)’);
plotSimulationStates(t(2:end),x_hat_plus(:,2:end)’+sigma_x_hat_plus);
plotSimulationStates(t(2:end) ,x_hat_plus(:,2:end)’-sigma_x_hat_plus);
for subplot_i = 1:n

subplot(n,1,subplot_i); hold on;

legend ("$x$","$+2\x$","$+2\sigma$","$-2\sigma$","Location","eastoutside","Interpreter",’latex’);
end

t=0:Dt:N*Dt;
figure; hold on;
sgtitle("DT Linearized Kalman Filter");
plotSimulationStates(t(2:end),2*sigma_x_hat_plus);
plotSimulationStates(t(2:end),-2*sigma_x_hat_plus);
for subplot_i = 1:n

subplot(n,1,subplot_i); hold on;

legend ("$+2\sigma$","$-2\sigma$","Location","eastoutside","Interpreter",’latex’);
end
subplot(4,1,1); xlabel("$x$")
subplot(4,1,2);xlabel("$\dot{x}$")
subplot(4,1,3) ;xlabel ("$y$")
subplot(4,1,4) ;xlabel ("$\dot{y}$")

%% EKF

r_0 = sqrt(667872);

mu = 398600; 7, Gravitational parameter for Earth in km~3/s72
R_E = 6378; YEarth radius [km]

omega_E = 2xpi/86400; %Earth rotation rate [rad/s]

x_0 = [6678; 0; 0; r_0 * sqrt(mu/r_0-3)];

params = struct(’mu’, mu, ’R_E’, R_E, ’omega_E’, omega_E);

[x_hat_plus_ekf, P_plus_ekf, innov_ekf, S_ekf] = EKF_Orbit(ydata, t, mu_0, P_O, Q_KF, Rtrue, params.mu, <
params.R_E, params.omega_E);
[sigma_x_hat_plus_ekf, ~] = getSigmas(n, N, P_plus_ekf, P_plus_ekf);
x_hat_plus_ekf = x_hat_plus_ekf’;
%% Plot
figure; hold on;
sgtitle ("EKF State Estimate");
plotSimulationStates(t(2:end) ,x_hat_plus_ekf(2:end,:));
plotSimulationStates(t(2:end),x_hat_plus_ekf(2:end,:)+sigma_x_hat_plus_ekf);
plotSimulationStates(t(2:end) ,x_hat_plus_ekf(2:end,:)-sigma_x_hat_plus_ekf);
for subplot_i = 1:n
subplot(n,1,subplot_i); hold on;
legend ("$x$", "$+2\x$", "$+2\sigma$" ,"$-2\sigma$","Location", "eastoutside","Interpreter",’latex’);
end

55



%% Plot
figure; hold on;
sgtitle("EKF State Estimate Certainties");
plotSimulationStates(t(2:end),2*sigma_x_hat_plus_ekf) ;
plotSimulationStates(t(2:end),-2*sigma_x_hat_plus_ekf);
for subplot_i = 1:n

subplot(n,1,subplot_i); hold on;

legend ("$+2\sigma$","$-2\sigma$","Location","eastoutside","Interpreter",’latex’);

end
%% Helper Functions
% TODO: Move to common?

function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)
sigma_2_x_hat_plus = zeros(n,N);
sigma_2_x_hat_minus = zeros(n,N);
for k = 1:N
sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
end
sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;
end

Listing 13: Code for Final Project Part 2 Problem 6.m

File: GetAllStationMeasurements.m

function [y_k, visible_stations_k, y_k_stacked] = GetAllStationMeasurements(x, t)
% TODO: Check if this should be global
N_stations = 12;

y_k = [1;
visible_stations_k = [];
y_k_stacked = [];
for i = 1:N_stations
[y_i, is_visible] = GetStationMeasurement(x, t, i);
if is_visible
% Add measurement vector y~i(t) to stacked measurement vector
y_k = [y_k; y_il;
stationID = i;
visible_stations_k = [visible_stations_k stationID];
identified_measurements = [y_i;stationID];
y_k_stacked = [y_k_stacked identified_measurements];
end
end
end

Listing 14: Code for GetAllStationMeasurements.m

File: GetGroundStationState.m

% i is the station index (1 to 12)
function [X_i, Y_i, X_dot_i, Y_dot_i, theta_i] = GetGroundStationState(i, t)
% TODO: Check if these should be global
R_E = 6378; % Earth radius in km
omega_E = 2%pi/86400; 7 Earth rotation speed in rad/s
theta_i0 = (i - 1) * pi/6; % Initial location angle of ground station i

X_i = R_E * cos(omega_E * t + theta_iO);
Y_i = R_E * sin(omega_E * t + theta_i0);
X_dot_i = -omega_E * R_E * sin(omega_E * t + theta_iO);
Y_dot_i = omega_E * R_E * cos(omega_E * t + theta_i0);
theta_i = atan2(Y_i,X_i);

end

Listing 15: Code for GetGroundStationState.m

56



File: GetStationMeasurement.m

function [y_i, is_visible] = GetStationMeasurement(x, t, i)
[X_i, Y_i, X_dot_i, Y_dot_i, theta_i] = GetGroundStationState(i, t);

X =x(1);

X_dot = x(2);

Y = x(3);

Y_dot = x(4);

phi_i = atan2((Y - Y_i),(X - X_i));

phi_min = -pi/2 + theta_i;
phi_max = pi/2 + theta_i;

% Check if the LOS angle is within the station’s "sky-side" view cone

is_visible = (phi_i >= phi_min) && (phi_i <= phi_max);

angle_diff_raw = phi_i - theta_i; 7 GEN_AI
true_angle_diff_rad = mod(angle_diff_raw + pi, 2%pi) - pi; % GEN_AI
angle_rad = abs(true_angle_diff_rad); 7 GEN_AI

is_visible = angle_rad < pi/2; J GEN_AT
rtho_i = sqrt((X - X_i)"2 + (Y - Y_i)~2);
X_diff = X - X_i;

X_dot_diff = X_dot - X_dot_i;
Y_diff =Y - Y_i;
Y_dot_diff = Y_dot - Y_dot_i;

rho_dot_i = ((X_diff * X_dot_diff) + (Y_diff * Y_dot_diff))/rho_i;

y_i = [rho_i; rho_dot_i; phi_il;
end

Listing 16: Code for GetStationMeasurement.m

File: H jacobian.m

function [y, H, visible_ids] = H_jacobian(x, t, visible_ids, R_E, omega_E)
%Compute measurements and Jacobian for all visible statioms.

%Inputs:

% x - 4x1 spacecraft state [X; Xdot; Y; Ydot]

%t - current time [s]

% visible_ids- List of visible station IDs from actual time step measurements

% R_E - Earth radius [km]

% omega_E - Earth rotation rate [rad/s]

yA

%0utputs:

hy - stacked measurement vector for visible stations (3*number_visible x 1)
% H - stacked measurement Jacobian (3*number_visible x 4)

% visible_ids - station IDs used (returned as a column vector)

%Pull Out Current State
x1 = x(1); x2 = x(2); x3 = x(3); x4 = x(4);

%Ensure visible_ids is a column vector
visible_ids = visible_ids(:);

%Get Number of Measurements
number_visible = numel(visible_ids);

%#Compute Current Position of Each Ground Tracking Station

X_i = zeros(1,12);
X_dot_i = zeros(1,12);
Y_i = zeros(1,12);
Y_dot_i = zeros(1,12);

for i = 1:12
theta_i_0 = (i - 1)*pi/6;
X_i(i) = R_Excos(omega_Ext + theta_i_0);
Y_i(i) = R_E*sin(omega_Ext + theta_i_0);

X_dot_i(i) = -omega_E*R_E*sin(omega_E*t + theta_i_0);

o7



Y_dot_i(i) = omega_E*R_E*cos(omega_Ext + theta_i_0);

end

%Preallocate output arrays

H = zeros(3*number_visible,4);
y = zeros(3*number_visible,1);

%Loop through specified visible station IDs

for k = 1:number_visible
i = visible_ids(k);

%Solve for Estimated Position Using Non-Linear CT Functions
delta_X = x1 - X_i(i);

x2 - X_dot_i(i);

delta Y = x3 - Y_i(i);

x4 - Y_dot_i(i);

delta_X_dot =

delta_Y_dot =

phi_i
rho_i

y_i = [rho_i; rho_dot_i; phi_il;

atan2(x3 - Y_i(i), x1 - X_i(i));
sqrt(delta_X"2 + delta_Y"2);
rho_dot_i = (delta_X*delta_X_dot + delta_Y*delta_Y_dot)/rho_ij;

%Calculate DT H Matrix Linearized at Estimation Point
H_i = zeros(3,4);
a = delta_X*delta_X_dot + delta_Y*delta_Y_dot;

H_i(1,1) = delta_X/rho_i;
H_i(1,3) = delta_Y/rho_i;

H_i(2,1) = (delta_X_dot/rho_i) - (a*delta_X/rho_i"3);
H_i(2,3) = (delta_Y_dot/rho_i) - (a*delta_Y/rho_i~3);

H_i(2,2) = delta_X/rho_i;
H_i(2,4) = delta_Y/rho_i;

H_i(3,1) = -delta_Y/(rho_i"~2);
H_i(3,3) = delta_X/(rho_i"2);

%Add to Output Matrix
idx_start = 3x(k - 1) + 1;
y(idx_start:idx_start+2)
H(idx_start:idx_start+2,:

end

end

Listing 17: Code for H_jacobian.m

File: NonlinearSimulation.m

function outputs = NonlinearSimulation(x_0,T,Dt)
t = 0:Dt:T;
% 1. Simulate the states
options = odeset(’RelTol’, le-12, ’AbsTol’, le-12);
[*,x] = ode45(@NonlinearStateEquations, t, x_0, options);

outputs.x = X;

% 2. Calculate the Measurements at Each Time Step
N_steps = T/Dt+1;

y = cell(N_steps, 1); % Use a cell array for variable-length vectors

visible_stations = cell(N_steps,1);

y_stacked = cell(N_steps,1);

for k = 1:N_steps

current_t = t(k);
current_x = x(k, :)’;
[y_k,visible_stations{k},y_stacked{k}] = GetAllStationMeasurements(current_x, current_t);

y{k} = y_k’;

end

58



N

¥
N

outputs.y = y;
outputs.visible_stations = visible_stations;
outputs.y_stacked = y_stacked;

end

Listing 18: Code for NonlinearSimulation.m

File: NonlinearSimulationNoisy.m

function outputs = NonlinearSimulationNoisy(x_0,t_0,T,Dt,S_w,S_v)
t = t_0:Dt:T;
% 1. Simulate the states
options = odeset(’RelTol’, le-12, ’AbsTol’, le-12);
[7,x] = ode45(@NonlinearStateEquations, t, x_0, optiomns);
outputs.x = x;

-, =, =, 7, Gamma_0, =, =, 7, 7] = getLinearizedMatrices(x_0, t_0, Dt, 0, 0);

if numel(t) ==
outputs.x = x(end,:);
x = x(end,:);
end
M = size(S_w, 1);
q_k = randn(M, numel(t));
xi_k = S_w * q_k;
Omega_tilde_k = Gamma_O * Dt;
w_k = Omega_tilde_k * xi_k;
x = x” + w_k;
X = x7;
% 2. Calculate the Measurements at Each Time Step
N_steps = (T-t_0)/Dt;
y = cell(N_steps, 1); % Use a cell array for variable-length vectors
visible_stations = cell(N_steps,1);
y_stacked = cell(N_steps,1);

for k = 1:N_steps
current_t = t(k+1);
current_x = x(k+1, :)’;
[y_k,visible_stations{k},y_stacked{k}] = GetAllStationMeasurements(current_x, current_t);
p = size(y_k,1);
g_k = randn(p, 1);
N_visible_stations_k = numel(visible_stations{k});
S_v_diag = mat2cell(repmat(S_v,1,N_visible_stations_k),3,3%ones(1,N_visible_stations_k));
S_v_blk = blkdiag(S_v_diag{:});
v_k = S_v_blk * q_k; % Measurement noise
y_k = y_k + v_k;

y_stacked{k} = reshape(y_stacked{k},4,[]) + [reshape(v_k,3,[]);zeros(1,N_visible_stations_k)];
y{k} = y_k’;
end
outputs.y = y;
outputs.visible_stations = visible_stations;
outputs.y_stacked = y_stacked;
end

Listing 19: Code for NonlinearSimulationNoisy.m

File: NonlinearStateEquations.m

function dx = NonlinearStateEquations(™, x)
% TODO: Check if we want that globally
mu = 398600; J, Standard gravitational parameter
r = sqrt(x(1)~2 + x(3)"2);
x1_dot = x(2);
x2_dot -mu*x(1)/r"3;
x3_dot = x(4);

59



x4_dot = -mu*x(3)/r"3;
dx = [x1_dot; x2_dot; x3_dot; x4_dot];
end

Listing 20: Code for NonlinearStateEquations.m

File: Part1Question3LinearDTSimulation.m

%% Simulation Config
% Dummy Variables % TODO: Remove

n = numel (x_nom) ;

p = 2; % TODO: Vary this.
Q = zeros(n);

R = zeros(p);

r = Re + 300;

T = 2*pi*sqrt(r~3/mu);

Dt = 10;

T = 1400%Dt;

params.mu = mu;

dX0 = 0.001*x_nom; % TODO: Good IC
dx0 = [0,0.075,0,-0.021];

%% Simulation

dt_LTI_outputs = DTSimulation(Q,R,dX0’,T,delta_t,params);
%% Plot

%% DT Simulated States and Nominal States vs. Time
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)

plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)
sgtitle("DT Simulated States and Nominal States vs. Time")

%% Sanity Check on Visibility
figure; hold on;

plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x)
plotSimulationStatesCartesian(dt_LTI_outputs.t,dt_LTI_outputs.x_nom)

plot (Re*sin(0:0.01: (2xpi)) ,Re*cos(0:0.01: (2%pi)))
ifoo = 251;
for stationID = 1:12

[X_1_tfoo, Y_1_tfoo, ~, ~, "] = GetGroundStationState(stationID, dt_LTI_outputs.t(ifoo));
scatter(X_l_tfoo,Y_l_tfoo,’filled’,“HandleVisibility",“off“)

text (X_1_tfoo,Y_1_tfoo,num2str(stationID))
end
x_tfoo = dt_LTI_outputs.x(ifoo,:);
scatter(x_tfoo(1),x_tfoo(3))

sgtitle("DT Simulated States and Nominal States (Cartesian)")

%% DT Simulated State Perturbations vs. Time"

figure; hold on;
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.dx)
sgtitle("DT Simulated State Perturbations vs. Time")

%% DT Simulated Measurements vs. Time

figure; hold on;
plotStationMeasurements(dt_LTI_outputs)
sgtitle("DT Simulated Measurements vs. Time")

Listing 21: Code for Part1Question3LinearDTSimulation.m

File: PlotChiSquareTests.m

function PlotChiSquareTests(FilterName, ANEES, ANIS, K, alpha, N, n, p)

% NEES Confidence Interval bounds
ri_x = chi2inv(alpha/2, N*n) / N;
r2_x = chi2inv(1 - alpha/2, N*n) / N;

% NIS Confidence Interval bounds
rl_y = chi2inv(alpha/2, Nxp) / N;

60



r2_y = chi2inv(1l - alpha/2, N*p) / N;

% Expected value (theoretical mean) for a consistent filter
expected_nees = n;
expected_nis = p;

% Time vector for plotting
t_vec = 1:K;

figure();

subplot(1l, 2, 1);

hold on; grid on;

scatter(t_vec, ANEES, ’b’, ’DisplayName’,’ANEES (Average NEES)’);
yline(rl_x, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95) Lower Bound’);
yline(r2_x, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Upper Bound’);
yline(expected_nees, ’k:’, ’LineWidth’, 1, ’DisplayName’, ’Expected Value (n_x)’);
xlabel (’Time Step (k)’);

ylabel (’ANEES Value’);

title([FilterName ’> ANEES Test for Filter Consistency’]);
legend(’show’, ’Location’, ’best’);

%ylim([0.8*%rl_x, 1.2*r2_x]);

subplot(1l, 2, 2);
hold on; grid on;
scatter(t_vec, ANIS, ’b’, ’DisplayName’, ’ANIS (Average NIS)’);
yline(ri_y, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95) Lower Bound’);
yline(r2_y, ’r--’, ’LineWidth’, 1.5, ’DisplayName’, ’95% Upper Bound’);
yline(expected_nis, ’k:’, ’LineWidth’, 1, ’DisplayName’, ’Expected Value (n_y)’);
xlabel (’Time Step (k)’);
ylabel (’ANIS Value’);
title([FilterName > ANIS Test for Measurement Consistency’]);
legend(’show’, ’Location’, ’best’);
%ylim([0.8%rl_y, 1.2*r2_yl);

end

Listing 22: Code for PlotChiSquareTests.m

File: RunTMT rmh.m

clear; clc; %close all;

rng(100);

r_0 = sqrt(6678~2);

mu = 398600; 7 Gravitational parameter for Earth in km~3/s"2
R_E = 6378; %Earth radius [km]

omega_E = 2xpi/86400; %Earth rotation rate [rad/s]

x_0 = [6678; 0; 0; r_0 * sqrt(mu/r_0"3)];

addpath(’Extended Kalman Filter’);

load(’orbitdeterm_finalproj_KFdata.mat’);

Dt = 10; % Time-step size 10s

K = 1400; 7 1400 steps

N = 1000; % Number of Monte Carlo runs

alpha = 0.05; % For 95J Confidence Interval

n = 4; % Number of state vars

p = 3; /% Size of measurement vector

Q_KF = le-10*eye(2); ’, TODO: Use a proper guess

R_KF = Rtrue;

[ANEES_LKF, ANIS_LKF, ANEES_EKF, ANIS_EKF] = TruthModelTesting_rmh(...
N, x_0, Dt, K, Qtrue, Rtrue, Q_KF, R_KF,
@DTLinearizedKF, @EKF_Orbit, struct(’mu’, mu, ’R_E’, R_E, ’omega_E’, omega_E));

hto
PlotChiSquareTests (’LKF’, ANEES_LKF, ANIS_LKF, K, alpha, N, n, p);
PlotChiSquareTests(’EKF’, ANEES_EKF, ANIS_EKF, K, alpha, N, n, p);

Listing 23: Code for Run'TMT rmh.m

61



File: TruthModelTesting rmh.m

function [ANEES_LKF, ANIS_LKF, ANEES_EKF, ANIS_EKF] = TruthModelTesting_rmh(N, x_nom, Dt, K, Q_true, R_true,

Q_KF_guess, R_KF_guess, LKF, EKF, params)
% Define variables

n = size(x_nom, 1);

p = 3; ) Measurement vector dimension
KF_params.mu = params.mu;

% Arrays to store Ground Truth states and measurements
x_true = zeros(N, n, K+1);
y_true = cell(N, K+1);

% Arrays to store NEES and NIS results
NEES_LKF = zeros(N, K);
NIS_LKF = zeros(N, K);
NEES_EKF = zeros(N, K);
NIS_EKF = zeros(N, K);

% To calculate DT Process Noise Covariance from Q_true

-, =, 7, 7, Gamma_0, =, 7, 7, 7] = getlLinearizedMatrices(x_nom, O, Dt, O, params.mu);
disp([’Starting Monte Carlo simulation with N = ’, num2str(N), ’ runs...’]);
for i = 1:N

% Choose dx_hat_plus_0O and P_0O
dx_hat_plus_0 = zeros(1l,n);
x_hat_plus_0 = x_nom + dx_hat_plus_0’;

% TODO: Verify these are correct

pos_variance = le-6;

vel_variance = le-5;

ICs = diag([pos_variance, vel_variance, pos_variance, vel_variance]);

% Instantiate ground truth state x(0) randomly
dx_true_0 = mvnrnd(dx_hat_plus_0’, ICs)’;
x_true(i,:,1) = x_nom + dx_true_0;

% Get S_w, S_v from Cholesky decomposition
S_w = chol(Q_true, ’lower’);
S_v = chol(R_true, ’lower’);

% Loop over K time steps to simulate ground truth
% for k = 1:K
% % Generate Ground Truth (Full Nonlinear Dynamics)

b h ommmmmmm e New process noise generation -----------———-—-
% M = size(Q_true, 1);

A q_k = randn(M, 1);

% xi_k = S_w * g_k;

% Omega_tilde_k = Gamma_0 * Dt;

YA w_k = Omega_tilde_k * xi_k;

YA YA e e
YA

A % Use Full Nonlinear Dynamics to propagate state

% x_true_k = x_true(i,:,k);

% nonlinearQOutputs = NonlinearSimulation(x_true_k, Dt, Dt);

A x_prop_k_plus_1 = nonlinearOutputs.x(end,:)’;

% x_true(i,:,k+1) = x_prop_k_plus_1 + w_k;

A % Use noisy state to get measurements
% [y_k_plus_1, visible_stations_k_plus_1, y_k_plus_1_stacked] = <«
GetAllStationMeasurements (x_true(i,:,k+1), (k+1)*Dt);

% % Add measurement noise to measurements

A p_k_plus_1 = size(y_k_plus_1, 1);

A q_k_plus_1 = randn(p_k_plus_1, 1);

% N_visible_stations_k_plus_1 = numel(visible_stations_k_plus_1);

62



65 A S_v_diag = mat2cell(repmat(S_v, 1, N_visible_stations_k_plus_1), p, p*ones(l, <
N_visible_stations_k_plus_1));

66 A S_v_blk = blkdiag(S_v_diag{:});

67 A v_k_plus_1 = S_v_blk * gq_k_plus_1; % Measurement noise

68 % y_k_plus_1_stacked = reshape(y_k_plus_1_stacked, 4, []1) + [reshape(v_k_plus_1, p, [1); zeros(1, «
N_visible_stations_k_plus_1)]1;

69 A y_true{i,k+1} = y_k_plus_1_stacked; % NOTE: measurements should be 4 x n

70 % end

71 t_0 = 0;

73 /S Alternative nonlinear simulation ---------——--————-—-—-

74 t_f = 1400%Dt;

75 outputs_i = NonlinearSimulationNoisy(x_true(i,:,1),t_0,t_£f,Dt,S_w,S_v);
76 ydata_simulated_i = convertQOutput2Ydata(outputs_i);

77 ydata_simulated_i = [{NaN(4,1)};ydata_simulated_i];

78 [y_true{i,:}] = deal(ydata_simulated_i{:});

79 x_i = outputs_i.x(2:end,:);

80 x_true(i,:,2:end) =x_1i’;

81 A T T

82

83 %% Run Filters (LKF and EKF)

84

85 %Super bad implementation for now <---- CHANGE AT SOME POINT

86 tvec_ekf = 0:Dt:K*Dt;

87 %pos_variance = 100;

88 %vel_variance = 0.1;

89 %ICs = diag([pos_variance~2, vel_variance~2, pos_variance~2, vel_variance~2]);
90

91 A "for each test trajectory sample in the NEES and NIS tests, you should initialize the

92 % filter with exactly the same initial perturbation state estimate [...]

93 % and covariance"

94 % Linearized Kalman Filter (LKF)

95 [P_plus_1kf, x_hat_plus_lkf, ~, =, innov_1lkf, S_1kf] = LKF(ICs, x_hat_plus_0’, K, Dt, Q_KF_guess, <
R_KF_guess, y_true(i,2:end), KF_params, t_0);

96
97 % Extended Kalman Filter (EKF)

98 [x_hat_plus_ekf, P_plus_ekf, innov_ekf, S_ekf] = EKF(y_true(i,:), tvec_ekf, x_hat_plus_0’, ICs, <«
Q_KF_guess, R_KF_guess, params.mu, params.R_E, params.omega_E);

99
100 %% Calculate NEES/NIS for this run

101

102 % Loop over K time steps to calculate NEES/NIS

103 for k = 1:K

104 % LKF NEES/NIS (uses perturbation)

105 error_lkf = (x_true(i,:,k) - x_hat_plus_lkf(k,:))’;

106 NEES_LKF(i, k) = error_lkf’ * (P_plus_lkf(:,:,k) \ error_lkf);
107 if “isempty(innov_lkf{k})

108 NIS_LKF(i, k) = innov_1lkf{k}’ * (S_lkf{k} \ innov_lkf{k});
109 else

110 % No measurement available, exclude from mean

111 NIS_LKF(i, k) = NaN;

112 end

114 % EKF NEES/NIS (uses total state)
115 error_ekf = x_true(i,:,k)’ - x_hat_plus_ekf(:,k);

116 NEES_EKF (i, k) = error_ekf’ * (P_plus_ekf(:,:,k) \ error_ekf);
117 if “isempty(innov_ekf{k})

118 NIS_EKF(i, k) = innov_ekf{k}’ * (S_ekf{k} \ innov_ekf{k});
119 else

120 % No measurement available, exclude from mean

121 NIS_EKF(i, k) = NaN;

122 end

123 end

124

125 if mod(i, 10) ==

126 disp([’Completed run ’, num2str(i), ’ of ’, num2str(N)]);

127 end

128 end

129 disp(’Monte Carlo simulation complete.’);

63



assignin("base",’y_montecarlo_end’,y_true(end,:))
assignin("base",’x_montecarlo_end’,reshape(x_true(end,:,:),4,[]))
assignin("base",’x_hat_plus_lkf_end’,x_hat_plus_1kf)
assignin("base",’x_hat_plus_lkf_end’,x_hat_plus_lkf)
assignin("base",’x_hat_plus_ekf_1’,x_hat_plus_ekf)
assignin("base",’P_plus_lkf_montecarlo_end’,P_plus_lkf)

%% Statistical Test (ANEES & ANIS)
% Calculate the average mean across all runs
ANEES_LKF = nanmean(NEES_LKF, 1);
ANIS_LKF = nanmean(NIS_LKF, 1);
ANEES_EKF = nanmean(NEES_EKF, 1);
ANIS_EKF = nanmean(NIS_EKF, 1);
end

Listing 24: Code for TruthModelTesting rmh.m

File: compareDTLinearized AndNonLinear.m

%% Simulation Comparison

figure; hold on;

sgtitle("DT Linearized vs. Nonlinear Simulation States")
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.x)
plotSimulationStates(t,outputs.x);

figure; hold on;

sgtitle("DT Linearized States error vs. Nonlinear Simulation States")
dt_LTI_outputs.error = dt_LTI_outputs.x - outputs.x;
plotSimulationStates(dt_LTI_outputs.t,dt_LTI_outputs.error);

Listing 25: Code for compareDTLinearized AndNonLinear.m

File: convertOutput2Ydata.m

function ydata_simulated = convertOutput2Ydata(outputs)
ydata_simulated = cell(size(outputs.y));
for i_y = 1:numel(outputs.y)
y_k = outputs.y{i_y};
visible_stations_k = outputs.visible_stations{i_y};
ydata_simulated_k = [reshape(y_k,3,[]); visible_stations_k];
ydata_simulated{i_y} = ydata_simulated_k;
end
end

Listing 26: Code for convertOutput2Ydata.m

File: convertYdata20utput.m

function outputs = convertYdata20utput(ydata,Dt)
t = Dt*(0: (numel (ydata)-1));
outputs.t = t;
outputs.y = cell(size(ydata));
outputs.visible_stations = cell(size(ydata));
for i_ydata = 1:numel(ydata)
ydata_k = ydata{i_ydata};
if “isempty(ydata_k)
outputs.y{i_ydata} = reshape(ydata_k(1:3,:),1,[1);
end
end
for i_ydata = 1:numel(ydata)
visible_stations_k = ydata{i_ydata};
if ~“isempty(visible_stations_k)
outputs.visible_stations{i_ydata} = reshape(visible_stations_k(end,:),1,[]);
end
end

64



xs“end

Listing 27: Code for convertYdata20utput.m

File: getLinearizedMatrices.m

function [A_k, B_k, C_k, D_k, Gamma_k, F_k, G_k, H_k, M_k] = getLinearizedMatrices(x_nom, time, delta_t, <«

stationID, mu)

%Pull out linearization point variables

x1

x_nom(1); %X Position [km]

x2 = x_nom(2); %X Velocity [km/s]
x3 = x_nom(3); %Y Position [km]
x4 = x_nom(4); %Y Velocity [km/s]

%Get Location and Velocity of Tracking Station
[X_i, Y_i, X_dot_i, Y_dot_i, ~] = GetGroundStationState(stationID, time);

%Define Commonly Used Variables
r = sqrt(x1~2 + x3°2); %Earth-centered radial distance [km]
r5 = r~5; /Earth-centered radial distance to the fifth power [km~5]

delta_X_i

delta_X_dot_i = x2 - X_dot_i; %Relative spacecraft-station X velocity [km/s]

delta_Y_i

delta_Y_dot_i = x4 - Y_dot_i; %Relative spacecraft-station Y velocity [km/s]

a = delta_X_i * delta_X_dot_i + delta_Y_i * delta_Y_dot_i; %Range rate numerator

x1 - X_i; %Relative spacecraft-station X position [km]

x3 - Y_i; %Relative spacecraft-station Y position [km]

rho_i = sqrt(delta_X_i~2 + delta_Y_i~2); JSpacecraft-Station Range [km]

%% Define Continuous Time Matrices

%Define CT Dynamics Jacobian A(x) at Linearization Point (inertial frame)
A_k = zeros(4, 4);

A k(1, 2) = 1;

A_k(3, 4)
A_k(2, 1)
A k(2, 3)
A k(4, 1)
A_k(4, 3)

=1;

mu * (2%x1°2 - x3°2) / r5;
3 *xmu *x x1 * x3 / r5;
3 % mu * x1 * x3 / r5;
mu * (2%x3°2 - x1°2) / r5;

%Define CT Input Jacobian B(x) at Linearization Point

Bk =1[00
1 0;
0 0;
0 1]1;

>

%Define Measurement Jacobian C(x) at Linearization Point

C_k = zero
C_k(1, 1)
C_k(1, 3)
C_k(2, 1)
C_k(2, 2)
C_k(2, 3)
C_k(2, 4
C_k(3, 1)
C_k(3, 3)

%Define Force Influence on Measurement Jacobian D(x) at Linearization Point

s(

3, 4);

delta_X_i / rho_i;

delta_Y_i / rho_i;

(delta_X_dot_i / rho_i) - ((a * delta_X_i) / rho_i"3);
delta_X_i / rho_i;

(delta_Y_dot_i / rho_i) - ((a * delta_Y_i) / rho_i"3);
delta_Y_i / rho_i;

-1 * delta_Y_i / rho_i"2;

delta_X_i / rho_i~2;

D_k = zeros(3, 2);

%Define CT Disturbance Jacobian Gamma(x) at Linearization Point

Gamma_k =

[o
1
0
0

0;

3

o O

B

11;

%% Determine Discrete Time Matrices With Eulerization

65



%Determine Eulerized DT F and G matrices
F_k = eye(size(A_k)) + delta_t * A_k;
G_k = delta_t * B_k;

%Copy C and D matrices to H and M

H_k = C_k; %CT -> DT is identical for H matrix
M_k = D_k; %CT -> DT is identical for M matrix

end

Listing 28: Code for getLinearizedMatrices.m

File: getSigmas.m

function [sigma_x_hat_plus, sigma_x_hat_minus] = getSigmas(n, N, P_plus, P_minus)

sigma_2_x_hat_plus = zeros(n,N);
sigma_2_x_hat_minus = zeros(m,N);
for k = 1:N
sigma_2_x_hat_plus(:,k) = diag(P_plus(:,:,k));
sigma_2_x_hat_minus(:,k) = diag(P_minus(:,:,k));
end
sigma_x_hat_plus = sqrt(sigma_2_x_hat_plus)’;
sigma_x_hat_minus = sqrt(sigma_2_x_hat_minus)’;
end

Listing 29: Code for getSigmas.m

File: getXNom.m

function x = getXNom(t)

mu = 398600; %Gravitational Constant [km~3/s"2]
Re = 6378; %Earth radius [km]

omegaE = (2xpi) / 86400; JEarth rotational rate [rad/s]
r = Re + 300;

theta_dot = sqrt(mu/(zr"3));

theta_0 = 0; % TODO: allow non-zero

theta = theta_dot.*t + theta_O0;

x(:,1) = r*cos(theta);

x(:,2) = -r*theta_dot.*sin(theta);

x(:,3) = r*sin(theta);

x(:,4) = r*theta_dot.*cos(theta);

end

Listing 30: Code for getXNom.m

File: orbit dynamics.m

function dx = orbit_dynamics(~, x, u, mu)
%Calculates continuous-time spacecraft dynamics derivatives.
%Inputs:

% = - Placeholder for used time variable, kept for ODE45
% x - 4x1 state vector [X; Xdot; Y; Ydot] in km and km/s
% u - 2xl1 control input [ul; u2] (accelerations in km/s~2)
% mu - gravitational parameter [km~3/s~2]

YA

%0utput:

% dx - 4x1 time derivative of the state

%Pull Out States
x(1); x2
x(3); x4

x(2);
x(4);

x1
x3

%Calculate Derivatives
x2_dot = -mu * x1 / (sqrt(x1~2 + x372))"3 + u(l);

66



x4_dot = -mu * x3 / (sqrt(x1~2 + x372))"3 + u(2);

%Assemble Output Derivative
dx = [x2; x2_dot; x4; x4_dot];

end

Listing 31: Code for orbit dynamics.m

File: plotLastTrial.m

%% Plot Last trial

e_x_montecarlo_end = x_montecarlo_end - x_hat_plus_lkf_end’;

e_x_montecarlo_end = e_x_montecarlo_end’;

[sigma_plus_lkf_montecarlo_end, ~] = getSigmas(n, K, P_plus_lkf_montecarlo_end, P_plus_lkf_montecarlo_end);

t = Dt*0:K;
figure; hold on;
sgtitle("DT Linearized Kalman Filter");

plotSimulationStates(t(2:end) ,e_x_montecarlo_end(2:end,:));

plotSimulationStates(t(2:end),2*sigma_plus_lkf_montecarlo_end);
plotSimulationStates(t(2:end),-2*sigma_plus_lkf_montecarlo_end);

for subplot_i = 1:n
subplot(n,1,subplot_i); hold on;

legend ("$x3$","$+2\x$", "$+2\sigma$","$-2\sigma$", "Location

end

Listing 32: Code for plotLastTrial.m

File: plotSimulationStates.m

function plotSimulationStates(t,x)

%% Plot

subplot_ylabels = {’$$x [km]$$’;...
*$$\dot{x} [km/sI$$’;...
*$$y [km] $$°
*$$\dot{y} [km/s]1$$’;};

[, n] = size(x);

for subplot_i = 1:n
subplot(n,1,subplot_i); hold on;
plot(t,x(:,subplot_i));
% i_x_A = x_A_indices(subplot_i);
% scatter(t_window,x_A(i_x_A,k_window+1));

ylabel (subplot_ylabels(subplot_i),"Interpreter","latex")

xlabel(’t [s]?)
end
end

Listing 33: Code for plotSimulationStates.m

File: plotSimulationStatesCartesian.m

function plotSimulationStatesCartesian(t,x)
%% Plot

[7, n]l= size(x);

plot(x(:,1),x(:,3));

axis equal;

grid on;

% i_x_A = x_A_indices(subplot_i);

% scatter(t_window,x_A(i_x_A,k_window+1));

end

Listing 34: Code for plotSimulationStatesCartesian.m

67

eastoutside","Interpreter",’latex’);



File: plotStationMeasurements.m

function plotStationMeasurements(outputs) 7 GENAI

% PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot <

% % GENAI

% Inputs: % GENAI

% outputs.t : 1xM vector of time instances (s). % GENAI

% outputs.visible_stations : Mxl cell array; cell k contains a vector of station IDs (double) visible <
at time outputs.t(k). % GENAI

% outputs.y : Mxl cell array; cell k contains a vector of measurements [rhol, rdotl, phil, rho2, rdot2, <«

showing station visibility over time, using matching colors. % GENAI

phi2, ...] corresponding to the station IDs in outputs.visible_stations{kl}. 7% GENAI
ptSize=20; 7 GENAI
stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); 7% GENAI
for k=1:length(outputs.t) ’ GENAI
ids=outputs.visible_stations{k}; 7/ GENAI
measurements=outputs.y{k}; % GENAI
if isempty(ids) 7% GENAI
continue; % GENAI
end 7 GENAI
for i=1:length(ids) ’ GENAI
current_id=ids(i); % GENAI
vals=measurements ((i-1)*3+1:(i-1)*3+3); % GENAI
new_row=[outputs.t(k),vals]; 7% GENAI
if isKey(stationMap,current_id) 7, GENAI
stationMap(current_id)=[stationMap (current_id) ;new_row]; 7, GENAI
else 7, GENAI
stationMap(current_id)=new_row; 7 GENAI
end 7 GENAI
if isKey(visibilityMap,current_id) 7% GENAI

visibilityMap(current_id)=[visibilityMap(current_id) ;outputs.t(k),current_id]; 7 GENAI

else J, GENAI
visibilityMap(current_id)=[outputs.t(k),current_id]; ’ GENAI
end 7, GENAI
end 7 GENAI
end , GENAI
all_ids=sort(cell2mat (keys(stationMap))); 7% GENAI
if isempty(all_ids) % GENAI
warning (’No station data found to plot.’); 7 GENAI
return; % GENAI
end 7 GENAI
colors=lines(length(all_ids)); 7% GENAI
axl=subplot(4,1,1);hold on;grid on;box on; 7 GENAI
ylabel(’$\rho$ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
ax2=subplot(4,1,2);hold on;grid on;box on; 7% GENAI
ylabel (’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’latex’,’FontSize’,12); 7 GENAI
ax3=subplot(4,1,3);hold on;grid on;box on; 7% GENAI
ylabel(’$\phi$ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
ax4=subplot(4,1,4) ;hold on;grid on;box on; 7 GENAI
ylabel(’Station ID’); % GENAI
xlabel (’Time (t)’); % GENAI
for i=1:length(all_ids) 7 GENAI
id=all_ids(i); % GENAI
data=stationMap(id); ’, GENAI
vis_data=visibilityMap(id); % GENAI
col=colors(i,:); % GENAI
legName=sprintf (’Station %d’,id); % GENAI
scatter(axl,data(:,1),data(:,2),ptSize,col,’filled’, ’DisplayName’,legName); 7 GENAI
scatter(ax2,data(:,1),data(:,3),ptSize,col,’filled’, ’DisplayName’,legName); 7 GENAI
scatter(ax3,data(:,1) ,data(:,4),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,col,’filled’); 7 GENAI
end 7 GENAI
yticks(all_ids); % GENAI
ylim([min(all_ids)-0.5,max(all_ids)+0.5]); % GENAI
% TODO: This line is really slow and we don’t really use it.
% TODO: Uncomment if needed.
% linkaxes([axl,ax2,ax3,ax4],’x’); % GENAI

68



o1 || end % GENAT
Listing 35: Code for plotStationMeasurements.m

File: plotStationMeasurements2.m

1 || function plotStationMeasurements(outputs) % GENAI
> || % PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot <
showing station visibility over time, using matching colors. % GENAI

3 || % % GENAI

2 ||% Inputs: % GENAI

5| % outputs.t : 1xM vector of time instances (s). % GENAI

s 1| % outputs.visible_stations : Mxl cell array; cell k contains a vector of station IDs (double) visible <«
at time outputs.t(k). % GENAI

7% outputs.y : Mxl cell array; cell k contains a vector of measurements [rhol, rdotl, phil, rho2, rdot2, ¢«
phi2, ...] corresponding to the station IDs in outputs.visible_stations{k}. % GENAI

8 ptSize=20; 7 GENAI

9 stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI

10 visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
11 for k=1:length(outputs.t) 7 GENAI

12 ids=outputs.visible_stations{k}; 7 GENAI

13 measurements=outputs.y{k}; % GENAI

14 if isempty(ids) % GENAT

15 continue; % GENAI

16 end % GENAI

17 for i=1:length(ids) % GENAI

18 current_id=ids(i); % GENAI

19 vals=measurements ((i-1)*3+1:(i-1)*3+3); J GENAI

20 new_row=[outputs.t(k),vals]; 7 GENAI

21 if isKey(stationMap,current_id) 7 GENAI

22 stationMap(current_id)=[stationMap(current_id) ;new_row]; 7 GENAI
23 else 7 GENAI

24 stationMap(current_id)=new_row; 7 GENAI

25 end 7 GENAI

26 if isKey(visibilityMap,current_id) 7, GENAI

27 visibilityMap(current_id)=[visibilityMap(current_id) ;outputs.t(k),current_id]l; % GENAI
28 else 7 GENAI

29 visibilityMap(current_id)=[outputs.t(k),current_id]; 7 GENAI
30 end , GENAI

31 end % GENAI

32 end 7 GENAI

33 all_ids=sort(cell2mat (keys(stationMap))); 7 GENAI

34 if isempty(all_ids) 7% GENAI
35 warning (’No station data found to plot.’); 7% GENAI

36 return; % GENAT

37 end Y, GENAI

38 colors=lines(length(all_ids)); ’ GENAI

39 axl=subplot(4,1,1);hold on;grid on;box on; 7% GENAI

10 ylabel(’$\rho$ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI
a1 ax2=subplot(4,1,2);hold on;grid on;box on; 7 GENAI

42 ylabel(’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’latex’,’FontSize’,12); J GENAI
43 ax3=subplot(4,1,3);hold on;grid on;box on; 7% GENAI

44 ylabel (°$\phi$ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); J GENAI
45 ax4=subplot(4,1,4) ;hold on;grid on;box on; 7% GENAI

16 ylabel(’Station ID’); % GENAI

a7 xlabel(’Time (t)’); % GENAI

48 for i=1:length(all_ids) % GENAI

19 id=all_ids(i); % GENAI

50 data=stationMap(id); J, GENAI

51 vis_data=visibilityMap(id); % GENAI

52 col=colors(i,:); % GENAI

53 legName=sprintf (’Station %d’,id); ’ GENAI

54 scatter(axl,data(:,1),data(:,2),ptSize,col,’filled’, ’DisplayName’,legName); % GENAI
55 scatter(ax2,data(:,1),data(:,3),ptSize,col,’filled’,’DisplayName’,legName); % GENAI
56 scatter(ax3,data(:,1),data(:,4),ptSize,col,’filled’,’DisplayName’,legName); 7 GENAI
57 scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,col,’filled’); % GENAI

58 end % GENAI

59 yticks(all_ids); 7% GENAI

69



~

ylim([min(all_ids)-0.5,max(all_ids)+0.5]); 7 GENAI
% TODO: link axes is really slow. Consider uncomme
% linkaxes([axl,ax2,ax3,ax4],’x’); % GENAI

% --- X-Position Alignment --- % GENAI
pl=get(axl,’Position’); J GENAI
p2=get(ax2,’Position’); 7% GENAI
p3=get(ax3,’Position’); 7 GENAI
p4=get(ax4,’Position’); J GENAI
left_x=max([p1(1),p2(1),p3(1),p4(1)]1); % Find the
width_x=min([p1(3),p2(3),p3(3),p4(3)]); % Find the
set(axl,’Position’, [left_x,p1(2),width_x,p1(4)]);
set(ax2,’Position’, [left_x,p2(2),width_x,p2(4)]1);
set(ax3,’Position’, [left_x,p3(2) ,width_x,p3(4)1);
set (ax4,’Position’, [left_x,p4(2),width_x,p4(4)]);

end 7 GENAI

Listing 36: Code for plotStationMeasurements2.m

File: plotStationMeasurementsNoColor.m

function plotStationMeasurementsNoColor (outputs)

% PLOTSTATIONMEASUREMENTS Plots Rho, Rho_Dot, and Phi measurements from various stations, plus a subplot <
showing station visibility over time, using matching colors. 7 GENAI

outputs.visible_stations : Mxl cell array; cell k contains a vector of station IDs (double) visible <«

nting.

rightmost left edge 7 GENAI
narrowest width % GENAI

% GENAI
% GENAI
% GENAI
% GENAI

% % GENAI
% Inputs: % GENAI
% outputs.t : 1xM vector of time instances (s). % GENAI
yA
at time outputs.t(k). % GENAI
%

outputs.y : Mxl cell array; cell k contains a vector of measurements [rhol, rdotl, phil, rho2, rdot2, ¢«
phi2, ...] corresponding to the station IDs in outputs.visible_stations{k}. % GENAI

ptSize=20; % GENAT

stationMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI
visibilityMap=containers.Map(’KeyType’,’double’,’ValueType’,’any’); % GENAI

for k=1:length(outputs.t) 7 GENAI
ids=outputs.visible_stations{k}; % GENAI
measurements=outputs.y{k}; % GENAI
if isempty(ids) 7% GENAI
continue; J GENAI
end % GENAI
for i=1:length(ids) 7 GENAI
current_id=ids(i); % GENAI

vals=measurements ((i-1)*3+1:(i-1)*3+3); % GENAI

new_row=[outputs.t(k),vals]; 7 GENAI
if isKey(stationMap,current_id) 7, GENAI

stationMap(current_id)=[stationMap(current_id) ;new_row]; 7, GENAI

else 7 GENAI
stationMap(current_id)=new_row; % GENAI

end % GENAI

if isKey(visibilityMap,current_id) 7, GENAI

visibilityMap(current_id)=[visibilityMap(current_id) ;outputs.t(k),current_id]; 7% GENAI

else 7, GENAI
visibilityMap(current_id)=[outputs.t (k)
end 7 GENAI
end % GENAI
end % GENAI
all_ids=sort(cell2mat (keys(stationMap))); 7 GENAI
if isempty(all_ids) % GENAI

,current_id]; % GENAI

warning(’No station data found to plot.’); 7% GENAI

return; % GENAT
end 7 GENAI
axl=subplot(4,1,1);hold on;grid on;box on; 7 GENAI

ylabel(’$\rho$ (Range)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI

ax2=subplot(4,1,2);hold on;grid on;box on; 7% GENAI
ylabel (’$\dot{\rho}$ (Range Rate)’,’Interpreter’,’
ax3=subplot(4,1,3);hold on;grid on;box on; 7% GENAI

ylabel(’$\phi$ (Angle)’,’Interpreter’,’latex’,’FontSize’,12); % GENAI

ax4=subplot(4,1,4) ;hold on;grid on;box on; 7 GENAI

latex’,’FontSize’,12); 7 GENAI

70



ylabel(’Station ID’); % GENAI

xlabel(’Time (t)’); % GENAI

for i=1:length(all_ids) % GENAI
id=all_ids(i); % GENAI
data=stationMap(id); % GENAI
vis_data=visibilityMap(id); % GENAI
legName=sprintf (’Station %d’,id); ’ GENAI
scatter(axl,data(:,1),data(:,2),ptSize, ’filled’,’.’,’DisplayName’,legName); 7 GENAI
scatter(ax2,data(:,1),data(:,3),ptSize, ’filled’,’.’, ’DisplayName’,legName); 7% GENAI
scatter(ax3,data(:,1) ,data(:,4),ptSize,’filled’,’.’, ’DisplayName’,legName); ’ GENAI
scatter(ax4,vis_data(:,1),vis_data(:,2),ptSize,’filled’,’.’); % GENAI

end 7 GENAI

yticks(all_ids); 7% GENAI

ylim([min(all_ids)-0.5,max(all_ids)+0.5]); % GENAI

legend(ax1,’show’,’Location’,’eastoutside’); 7 GENAI

linkaxes([ax1,ax2,ax3,ax4],’x’); % GENAI

end J GENAI

Listing 37: Code for plotStationMeasurementsNoColor.m

File: propagate orbit.m

function x_next = propagate_orbit(x_curr, u_curr, dt, mu)

%Propagates the nonlinear dynamics one time step at a time (dt)
%Inputs:

% x_curr - 4x1 current state at t_k

% u_curr - 2x1 control input assumed ZOH (constant over [t_k, t_k+1])

% dt - time step [seconds]

% mu - gravitational parameter [km~3/s"2]
h

%0utput :

% x_next - 4x1 state at t_k+1 after integrating dynamics

% Anonymous handle for ODE45 (U_curr and Mu are held constant)
dynfun = @(t, x) orbit_dynamics(t, x, u_curr, mu);

% Integrate from t=0 to t=dt

tspan = [0, dt];

opts = odeset(’RelTol’,le-9,’AbsTol’,1e-9);

[*, x_traj]l = ode45(dynfun, tspan, x_curr, opts);

% Take final state
x_next = x_traj(end, :)7?;
end

Listing 38: Code for propagate orbit.m

71



	Team member contributions
	Ryan
	Philippe
	Jack

	Part I - Deterministic System Analysis
	Continuous-Time Dynamics
	Discrete-Time Linearization
	Dynamics Simulation
	Station Visibility
	Linearized DT simulation
	Full nonlinear simulation
	Results and Plots
	DT Linearized Simulation
	Nonlinear Simulation
	Nonlinear Simulated Measurements vs. Time
	Comparison


	Part II - Stochastic Nonlinear Filtering
	Stochastic Nonlinear Filter Validation via Monte Carlo Analysis
	Ground Truth Simulation
	Filter Consistency Testing
	Filter Tuning Methodology

	Linearized Kalman Filter (LKF)
	Initialization
	Time update/prediction step
	Index Convention 
	Measurement update/correction step
	Output
	Results

	Extended Kalman Filter (EKF)
	Initialization and EKF setup
	Time update (prediction)
	Measurement update
	Results

	State trajectory estimation and comparison

	Estimation Haiku - Advanced Question 13
	Appendix
	Appendix A: Equation Derivation
	Appendix B: MATLAB Code


